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Semantic segmentation

e Assigns each pixel to a specific class (e.g., cat,
grass, tree) from a predefined class list

e Trained on labeled datasets with segmentation
examples for each class

e Requires laborious manual annotation
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Vision-language pretraining: CLIP
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Vision-language pretraining: BLIP

In addition to measuring similarity, BLIP contains a text decoder that can
perform 1mage captioning and answer questions

“A man and a dog are
reading a book together.”

( Image captioning: }»\

Image-Text Retrieval: = BLIP
“The man sitting on a ==

Matching score: 0.75 ’

couch is smiling.”

[VQA: “What is the J / \ “A pair of glasses” J

dog wearing?”
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Open-vocabulary segmentation (OVS)

Vision-language models have enabled segmentation with arbitrary classes provided by the user

background
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MIOU

Open-vocabulary segmentation (OVS)
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First method: LSeg (2021)

Currently there are 21 methods listed on Papers with Code, including
OpenSeg (Google Research), OVSeg (Meta Al), X-Decoder (Microsoft)
Most methods utilize CLIP embeddings as a part of their pipeline
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Self-guided segmentation

* Can we remove the need for user-provided labels?
* QOur 1dea: use 1mage captioning to generate labels for OVS for fully
automated open segmentation

Semantic segmentation
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Problem with image captioning

e Usually only describes the main foreground objects
* Tends to use abstract words

: e L " motorcycle that is on dis-
Aerial view of a road in autumn. d'mdn IS n(‘ng a motor | by -
bike on a dirt road. play at a show.

o e 8l

Missing: trees mountain, fence people, floor, lamps
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Solution - local captions using ClusterBLIP

Multiscale Local captions
BLIP embeddings i
. K-means CRF Cg:‘;:gzd . 'backpack hike back trek hiking
BLIP + BLIP hike two hiking'
encoder b Ax2AXT6 Majority filter decoder ‘people wglking on grassy path in
—_— —_— B an open field'
.—' ‘hikers walking towards the
mountains near a snow capped'
TR ‘cloudy sky, overcast and foggy
day'
32x32x768

10



UNIVERSITY OF AMSTERDAM
X

Combining with OVS

ClusterBLIP

Captions

‘backpack hike back trek

hiking hike two hiking'

'people walking on grassy

path in an open field'

‘hikers walking towards the
mountains near a snow capped'
‘cloudy sky, overcast and

foggy day'

Extracted nouns

field, backpack, hike,
snow, day, sky, path,
trek, hiker, mountain

X-Decoder

Y

Segmented image

B backpack
. hike
E. sky
trek
hiker
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Example output

grass
cloud
tree
train
railroad
gravel
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Failure case 1: good masks, wrong labels

wall
tower
embrace
. man
cement
sky
groom
bride
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Failure case 1: good masks, wrong labels

Bl cow
B man
river
B person
boat
i view
flag
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Failure case 2: Competition of related labels
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Failure case 2: Competition of related labels

door
house
apartment
window
sidewalk
sofa
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Evaluation

The possible classes are unlimited so there i1s no clear ground truth
To evaluate on an established dataset, we map the generated classes to possible

ground truth classes
The mapping 1s done using SentenceBERT word embeddings
We measure cosine similarity to find the closest match

We evaluate on CityScapes (urban driving dataset, 20 classes)

17
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Evaluation example

Al
N l\|
| Y S .

v
A

" 1 B - 4
‘ l t | ) buildi buildi
| ‘ tree/vegetation uilding/building
» ree
[N ' . - ~ |
building/building “‘
o ) l

window/wall

- town/road

I ] - (VS

eople/personn
1/someone/person
NG TT A

city/road

wall/wall

road/road




UNIVERSITY OF AMSTERDAM
X

Baselines

New task, so there are no established baselines. We compare with OVS and with more naive self-guided approaches:

OVS:
e  X-Decoder with ground-truth classes present in the image.

e  X-Decoder with all possible ground-truth classes from the dataset

Self-guided:
e BLIP + X-Decoder: caption generation with one BLIP embedding per image

e  Grid BLIP + X-Decoder: image divided in a 4-part square grid, one BLIP embedding per part

In addition, we try generating multiple captions per embedding. This provides a larger and more diverse set of nouns for
X-Decoder.

19



UNIVERSITY OF AMSTERDAM
X

Results

Self-guided Nr of captions mloU
X-Decoder (classes from the image) X - 58.6
X-Decoder (all CityScapes classes) X - 50.2
1 11.0
) 234
SegSeg (ClusterBLIP + X-Decoder) v 15 36.5
35 39.0
1 1
) 173
BLIP + X-Decoder v 15 22.9
25 12.6
35 i
1 18.4
5 22.5
Grid BLIP + X-Decoder v 15 32.7
25 19.3
35 32.1

Our method significantly beats the naive
self-guided baselines

More captions improve performance, the
effect saturates around 15-25 captions.

Our method reaches up to 68.4 percent
performance compared to OVS with
ground-truth classes provided
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Concurrent work

* Rewatbowornwong et al. “Zero-guidance Segmentation Using Zero Segment Labels”, ICCV 2023 (2-6 October)
* They propose the same new task, calling it “Zero-guidance Segmentation”
*  Their method is different and involved first finding the segments, and then individually labelling them

DINO feature
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Thank you for your attention!
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