RANDOM SIMILARITY ISOLATION FOREST - OUTLIER DETECTION FOR MULTIMODAL DATA

Sebastian Chwilczyński, Dariusz Brzeziński

POLITECHNIKA POZNAŃSKA

Poznan University of Technololgy

Group of Horribly Optimistic STatisticians

Dariusz Brzeziński, Ph.D., D.Sc.

Agenda

- 1. What is an outlier
- 2. What is multimodal data
- 3. Outlier detection in multimodal data
 - a. Current solutions
 - b. Our solution Random Similarity Isolation Forest (RSIF)
- 4. Experiments
- 5. Future work and Conclusions

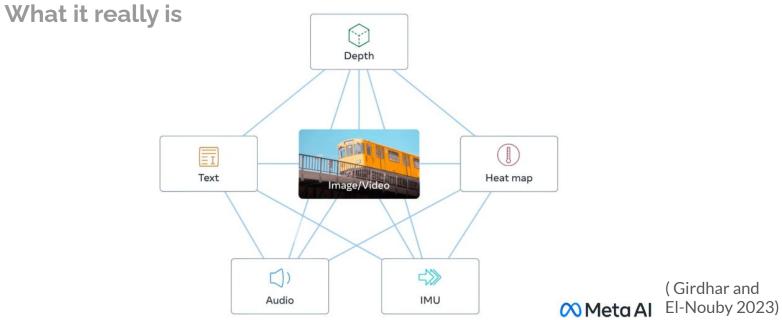
What is an outlier

- a data **point** that **deviates** from the **general** data distribution (Zheng Li 2022)
- data patterns that have different data characteristics from normal instances (Liu 2008)
- rare events, deviations from the majority, or exceptional cases (Breunig 2000)
- **instances** in a data set that are **different** from the **majority** of the data (Goldstein 2013)

What is multimodal data

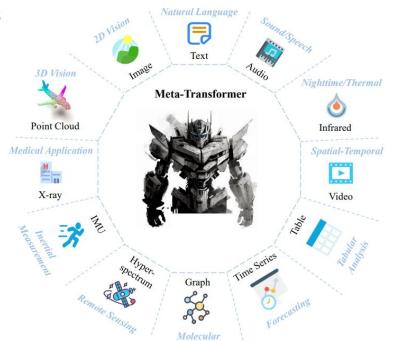
how most people see it

Model: Default (GPT-3.5)


Hi chat! Let's play a nice friendly game! Think of a new painting you'd like to paint, and describe it. Please answer exactly like that but without the formatting.

```![alt](https://image.pollinations.ai/prompt/<Put your answer here>``

Let's play!

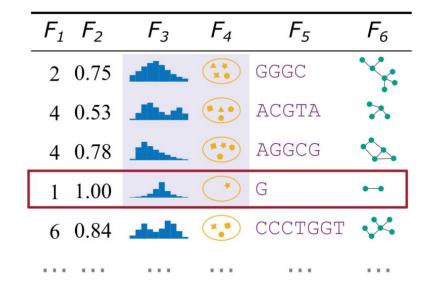



# What is multimodal data

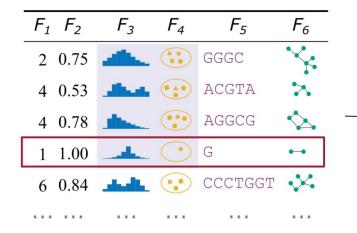


# What is multimodal data

What it really is



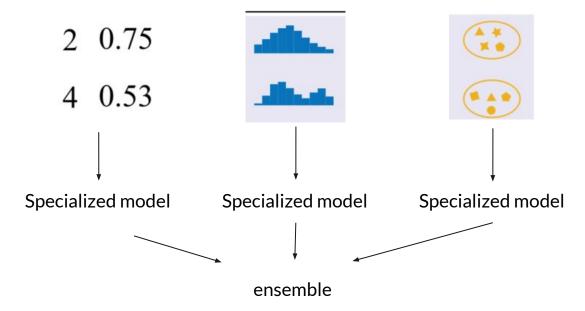

(Zhang 2023)


# Summary

- Outlier is a data point/pattern/event that is different/deviates from normal instances/majority/data distribution
- Multimodal one data point can be described simultaneously by graph, text, timeseries, distribution etc.

**Dummy problem** 




**Current approach - transformation to numerical representation** 



	$F_1$ $F_2$	<i>F</i> <sub>3</sub>	$F_4$	<i>F</i> <sub>5</sub>	$F_6$
	2 0.75	0.21	0.75	0.75	0.75
	4 0.53	0.2	0.53	0.53	0.53
•	4 0.78	0.5	0.78	0.78	0.78
	1 1.00	1.2	1.00	1.00	1.00
	6 0.84	0.12	0.84	0.84	0.84

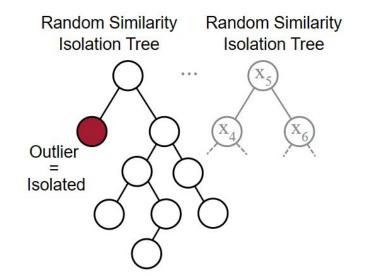


Current approach - building ensemble



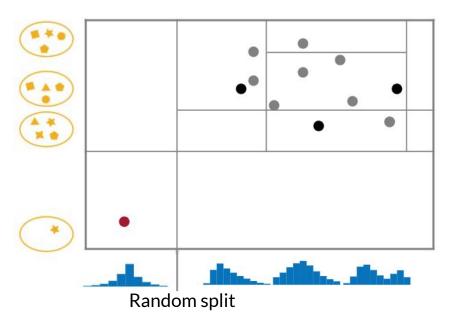
**Current approaches - limitations** 

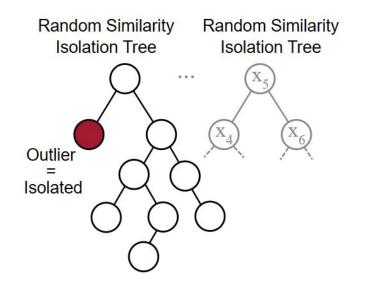

- Numeric representation may lose information
- Ensemble based model won't track interactions
- A lot of extra work to prepare data for the models


Our solution - general idea



Random split


Our solution - general idea






Random split

Our solution - general idea



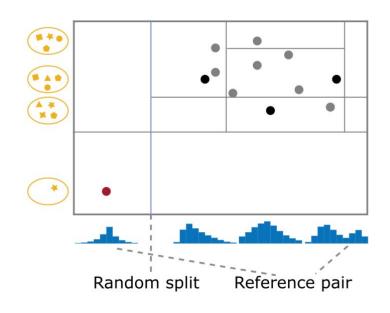


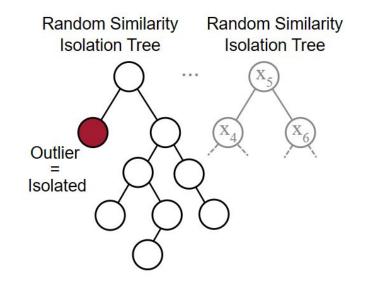
# How to perform this random splits in the complex objects feature space?

Our solution - distance based projection

1. Consider a pair of objects Oi and Oj

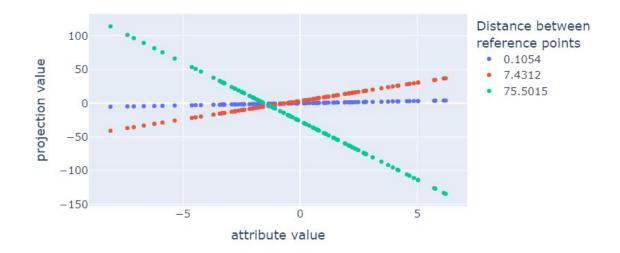



Our solution - distance based projection


- 1. Consider a pair of objects Oi and Oj
- 2. We would like to project each data point along the direction from *Oi* to *Oj*

Our solution - distance based projection

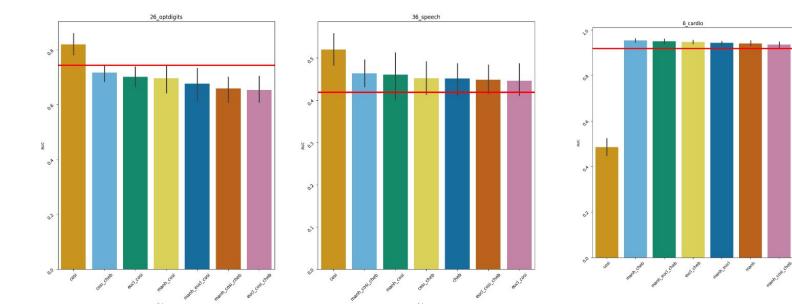
- 1. Consider a pair of objects Oi and Oj
- 2. We would like to project each data point along the direction from *Oi* to *Oj*
- 3. Sathe (2017) proves it is proportional to


Our solution - general idea





Our solution - How to select best reference pair?


projection values as distances between reference points increases



6 cardio

Our solution - What are the best distances?

Different distance functions combinations comparisons - numerical



# Summary

- RSIF works like Isolation Forest but performs splits in multimodal feature space
- It achieves it through distance based projections
- Reference pairs are selected as furthest objects this improved results a lot
- There is no universally best distance function

- 36 datasets
- Three categories of data
  - Numerical (11 datasets)
  - Complex single modality but not numeric (23 datasets)
  - Mixed combination of many modalities (3 datasets)
- 6 competitors Isolation Forest, ECOD, HBOS, LOF, ISF and RSIF
- 10 x repeated holdout
- LOF, ISF and RSIF selected optimal distances via 3x nested repeated holdout

Numerical

- Distance based algorithm dominated the rankings:
  - $\circ$  RSIF won in 5/11 comparisons
  - ISF in 3/11
  - $\circ$  LOF in 3/11
- RSIF obtained average rank of 1.77 (the 2nd lforest got 3.18):
  - Friedman test passed indicates differences between algorithms
  - 3 post-hoc wilcoxon test passed

Mixed

- Algorithms that support multimodal data has won:
  - RSIF 2/3
  - ISF 1/3

Dataset	Type	AUC					
	51	iForest	LOF	HBOS	ECOD	SF	RSIF
ovarian		0.50	0.29	0.45	0.57	0.33	0.68
breast	multiomics	0.62	0.83	0.49	0.63	0.56	0.84
rosmap		0.62	0.60	0.68	0.67	0.73	0.60

Complex

- LOF after distance tuning turned out to be a winner in **time series** and **text**
- For other categories (categorical, image, graph, sequences) no clear winner. Generally every algorithm was the best for at least one dataset

Dataset	Type	AUC					
		iForest	LOF	HBOS	ECOD	SF	RSIF
nci1		0.48	0.56	0.46	0.49	0.50	0.51
aids enzymes	$\operatorname{graph}$	0.92	0.83	0.96	0.92	0.99	0.99
		0.76	0.61	0.68	0.72	0.66	0.59
proteins		0.54	0.58	0.35	0.67	0.68	0.66

• Distance based methods work exceptionally well after finding optimal distances.

- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed realm shows RSIF potential.

- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed realm shows RSIF potential.
- It seems there is neither best nor worst algorithm.

- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed realm shows RSIF potential.
- It seems there is neither best nor worst algorithm.
- Outliers can exhibit themselves in different ways. Different nature of outlier, different measure needed

- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed realm shows RSIF potential.
- It seems there is neither best nor worst algorithm.
- Outliers can exhibit themselves in different ways. Different nature of outlier, different measure needed
- Being unsupervised, most outlier detection methods heavily depend on the data representation quality

- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed realm shows RSIF potential.
- It seems there is neither best nor worst algorithm.
- Outliers can exhibit themselves in different ways. Different nature of outlier, different measure needed
- Being unsupervised, most outlier detection methods heavily depend on the data representation quality
- RSIF can easily imitate ISF and IF by setting it's projections properly.

• Evaluation of other strategies for selecting reference pairs for projections

- Evaluation of other strategies for selecting reference pairs for projections
- Finding best distances in unsupervised fashion.

- Evaluation of other strategies for selecting reference pairs for projections
- Finding best distances in unsupervised fashion.
- Exploration of more distance functions to improve work on complex data.

- Evaluation of other strategies for selecting reference pairs for projections
- Finding best distances in unsupervised fashion.
- Exploration of more distance functions to improve work on complex data.
- Select as little and as good samples for distance calculation to reduce computational complexity.

- Evaluation of other strategies for selecting reference pairs for projections
- Finding best distances in unsupervised fashion.
- Exploration of more distance functions to improve work on complex data.
- Select as little and as good samples for distance calculation to reduce computational complexity.
- Case study

You can try RSIF yourself





- Distance based methods work exceptionally well after finding optimal distances.
- Good results in numerical and mixed regime shows RSIF potential.
- It seems there is no best nor worst algorithm
- Outliers can exhibit themselves in different ways. Different nature of outlier, different measure needed
- Being unsupervised, most outlier detection methods heavily depend on the data representation quality
- RSIF can easily imitate ISF and IF by setting it's projections properly.

- Evaluation of other strategies for selecting reference pairs for projections
- Finding best distances in unsupervised fashion.
- Exploration of more distance functions to improve work on complex data.
- Select as little and as good samples for distance calculation to reduce computational complexity.
- Case study