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IDEA Motivation: Neural Scaling Laws
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IDEAS Motivation: Neural Scaling Laws
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IDEA Computation in Feed-Forward Layer

NCBR O <) ®

Non-Embedding FLOPS in 1B Model

Attention
12.1%

Feed-Forward
87.9%




IDEAS Standard Feed-Forward Layer

NCBR © o ®

kS




NCBR © o ®

IDEAS Mixture-of-Experts Layer
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IDEAS Mixture-of-Experts: Token Choice
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IDEAS Standard Mixture-of-Experts
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Suppose we fix the number of parameters and computational
budget in the MoE model.
By granularity we will understand
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+ Mixture-of-Experts (small granularity): studied
+ Sparse model (extreme granularity): studied

+ What’s in between?
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We want to study the relation between granularity and the final

model performance.




IDEAS Outline

NCBR O <) ®

1. Introduction
2. Granularity

3. Experiments




IDEA

NCBR O <) ®

E

4.5

90M Model: Granularity vs Loss

gran=0.5
gran=1
gran=2
gran=4
gran=16

50k 100k 150k 200k
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+ More expensive shuffle operation
+ Higher communication cost

+ The exact gains depend on the implementation and hardware
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+ If we understand the per-step relation between granularity and time, we only

need to measure step time for the granular model, which is cheap
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How to make the benefit practical?

+ If we understand the per-step relation between granularity and time, we only
need to measure step time for the granular model, which is cheap

+ We can also design our training in such a way to make the use of granularity
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In the next part of our project we wanted to find out how do these results transfer when

scaling up the number of parameters. We examined models on four sizes:

+ MoE-mini: 90M parameters
+ MoE-small: 300M parameters
+ MoE-medium: 500M parameters

+ MoE-base: 1.9B parameters

We compared granular models against their dense counterparts and baseline MoE.
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IDEA The Trend Continues
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For our biggest MoE model (1.9B), we need:

+ 28% less steps to reach the final loss - when training on 10B tokens

+ 39% less steps to reach the final loss - when training on 20B tokens
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As an addition, we observed other advantages of the granular model.:

+ Better scaling with MoE on every layer (allows for uniform architecture)

+ Lower amounts of token dropping
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+ We present and study a new dimension in scaling MoE Language Models
+ We are currently working on larger-scale experiments

+ Our code is open-sourced at github.com/llm-random

+ Feel free to contact us with any questions

+ The paper will be out soon!
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Thank you for your attention!




