

Fine-Grained Mixture-of-Experts

LLM-Random Team @ IDEAS

- + Jakub Krajewski
- + Sebastian Jaszczur
- + Jan Ludziejewski
- + Maciej Pióro
- + Szymon Antoniak
- + Michał Krutul
- + Tomasz Odrzygóźdź
- + Marek Cygan

- **1**. Introduction
- 2. Granularity
- 3. Experiments

1. Introduction

- 2. Granularity
- 3. Experiments

Motivation: Neural Scaling Laws

Figure from *Kaplan et al. 2020, Scaling Laws for Neural Language Models*

Motivation: Neural Scaling Laws

$L(N,D) = \left[\left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right]^{\alpha_D}$

The Transformer

Feed-Forward Layer Width

Computation in Feed-Forward Layer

Non-Embedding FLOPS in 1B Model

Standard Feed-Forward Layer

- 1. Introduction
- 2. Granularity
- 3. Experiments

Standard Mixture-of-Experts

Granular Mixture-of-Experts

Suppose we fix the number of parameters and computational budget in the MoE model.

By granularity we will understand

$$g = \frac{d_{ff}}{d_{expert}}.$$

- + Mixture-of-Experts (*small* granularity): studied
- + Sparse model (*extreme* granularity): studied
- + What's in between?

- + Mixture-of-Experts (*small* granularity): studied
- + Sparse model (*extreme* granularity): studied
- + What's in between?

- + Mixture-of-Experts (*small* granularity): studied
- + Sparse model (*extreme* granularity): studied
- + What's in between?

We want to study the relation between granularity and the final

model performance.

- 1. Introduction
- 2. Granularity
- 3. Experiments

90M Model: Granularity vs Loss

90M Model: Granularity vs Loss

log(number of experts)

How do we pay for the lower loss?

- + More expensive shuffle operation
- + Higher communication cost
- + The exact gains depend on the implementation and hardware

How do we pay for the lower loss?

- + More expensive shuffle operation
- + Higher communication cost
- + The exact gains depend on the implementation and hardware

How do we pay for the lower loss?

- + More expensive shuffle operation
- + Higher communication cost
- + The exact gains depend on the implementation and hardware

How to make the benefit practical?

+ If we understand the per-step relation between granularity and time, we only

need to measure step time for the granular model, which is cheap

+ We can also design our training in such a way to make the use of granularity

How to make the benefit practical?

+ If we understand the per-step relation between granularity and time, we only

need to measure step time for the granular model, which is cheap

+ We can also design our training in such a way to make the use of granularity

90M Model: Loss vs Time

In the next part of our project we wanted to find out how do these results transfer when

scaling up the number of parameters. We examined models on four sizes:

- + MoE-mini: **90M** parameters
- + MoE-small: **300M** parameters
- + MoE-medium: **500M** parameters
- + MoE-base: **1.9B** parameters

We compared granular models against their dense counterparts and baseline MoE.

Loss Scaling: Dense vs Granular MoE

comp-params

The Trend Continues

For our biggest MoE model (1.9B), we need:

- + 28% less steps to reach the final loss when training on 10B tokens
- + **39% less steps** to reach the final loss when training on **20B** tokens

As an addition, we observed other advantages of the granular model:

- + Better scaling with MoE on **every layer** (allows for uniform architecture)
- + Lower amounts of token dropping

- + We present and study a new dimension in scaling MoE Language Models
- + We are currently working on larger-scale experiments
- + Our code is open-sourced at **github.com/llm-random**
- + Feel free to contact us with any questions
- + The paper will be out soon!

Thank you for your attention!