
Fine-Grained Mixture-of-Experts



LLM-Random Team @ IDEAS

+ Jakub Krajewski
+ Sebastian Jaszczur
+ Jan Ludziejewski
+ Maciej Pióro
+ Szymon Antoniak
+ Michał Krutul
+ Tomasz Odrzygóźdź
+ Marek Cygan

2



Outline

1. Introduction

2. Granularity

3. Experiments

3



Outline

1. Introduction

2. Granularity

3. Experiments

4



Motivation: Neural Scaling Laws
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Figure from Kaplan et al. 2020,
Scaling Laws for Neural Language Models
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The Transformer
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Feed-Forward Layer Width
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Computation in Feed-Forward Layer
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Standard Feed-Forward Layer
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Mixture-of-Experts Layer
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Mixture-of-Experts: Token Choice
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Mixture-of-Experts: Expert Choice
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Standard Mixture-of-Experts
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Granular Mixture-of-Experts
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Definition

Suppose we fix the number of parameters and computational 
budget in the MoE model.
By granularity we will understand
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Main question

+ Mixture-of-Experts (small granularity): studied

+ Sparse model (extreme granularity): studied

+ What’s in between?
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Main question

We want to study the relation between granularity and the final 

model performance.
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90M Model: Granularity vs Loss
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90M Model: Granularity vs Loss
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The cost

How do we pay for the lower loss?

+ More expensive shuffle operation

+ Higher communication cost

+ The exact gains depend on the implementation and hardware
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The cost
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How to make the benefit practical?

+ If we understand the per-step relation between granularity and time, we only 

need to measure step time for the granular model, which is cheap

+ We can also design our training in such a way to make the use of granularity
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90M Model: Loss vs Time
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Scaling Up

In the next part of our project we wanted to find out how do these results transfer when 

scaling up the number of parameters. We examined models on four sizes:

+ MoE-mini: 90M parameters

+ MoE-small: 300M parameters

+ MoE-medium: 500M parameters

+ MoE-base: 1.9B parameters

We compared granular models against their dense counterparts and baseline MoE.
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Loss Scaling: Dense vs Granular MoE
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The Trend Continues

For our biggest MoE model (1.9B), we need:

+ 28% less steps to reach the final loss - when training on 10B tokens

+ 39% less steps to reach the final loss - when training on 20B tokens
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Bonus

As an addition, we observed other advantages of the granular model:

+ Better scaling with MoE on every layer (allows for uniform architecture)

+ Lower amounts of token dropping

34



Final Remarks

+ We present and study a new dimension in scaling MoE Language Models

+ We are currently working on larger-scale experiments

+ Our code is open-sourced at github.com/llm-random 

+ Feel free to contact us with any questions

+ The paper will be out soon!
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Thank you for your attention!
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