
SOLVER-FREE NEURAL ORDINARY DIFFERENTIAL EQUATIONS

FOR FORECASTING LONG HORIZON TIME SERIES

Szymon Haponiuk

About me

● DL Algorithms team at NVIDIA
● Master’s student at University of Warsaw
● Music

○ Playing, composing, producing
○ DL applications, AI assisted workflows

Outline

● Forecasting, long horizon, why?
● Quick LTSF landscape analysis, inc. NeuralODE/LatentODE
● Curriculum Learning for long horizon time series
● Unified Long-Horizon Time-Series Benchmark
● Solver-free latent ODE

in this talk: trajectory = series (loosely speaking)

Forecasting

● We will focus on forecasting without static/dynamic covariates
● Onput: sequence of history states, sequence of history timestamps, sequence

of horizon timestamps
● Output: sequence of horizon states
● Usually history is a long sequence and horizon is short

○ eg. history of 192 points, horizon of 24 points
● LTSF: long-term time-series forecasting

○ eg. history of 500 points, horizon of 500 points

Why LTSF is hard?

● Long range dependencies
● Computational complexity

○ transformer models have quadratic-time complexity
○ RNN-based models deal with vanishing/exploding gradients

● Compounding errors
● It may simply be impossible to predict that far into the future with such data…

LTSF Landscape analysis

● Baselines
● Statistical methods
● Tree-based methods
● Classical deep learning
● Transformer variants
● State-space models
● N-Beats/N-Hits
● LTSF Linear
● LatentODE

LTSF Landscape analysis

LatentODE

source: https://arxiv.org/abs/1907.03907

Curriculum Learning

● Boosts training convergence speed of models for LTSF
● Applicable to models with variable output length (eg. DeepAR, LatentODE)
● Three distinct phases

○ Short length pretraining
○ Increasing length training
○ Full length training

Short length pretraining

● Sampling short length subtrajectories from each trajectory in the dataset
● Exposing the model to various histories, not only the beginning of the

trajectory
● Fixed number of epochs
● Model trained to forecast short horizon data usually converges much faster

Increasing length training

● Gradually increasing horizon length each epoch
● Similar to the Scheduled Sampling in https://arxiv.org/abs/1506.03099
● Connects first stage to the last stage

https://arxiv.org/abs/1506.03099

Full length training

● Standard way of training
● By the time the training reaches this stage, the model could be already quite

far in the convergence
● Model has seen a larger set of series histories, which may lead to better

generalization

Ablation on DeepAR

Unified Long-Horizon Time Series Benchmark

● 5 categories of time series
○ Real-life, univariate
○ Real-life, multivariate
○ Synthetic, MuJoCo
○ Synthetic, chaotic
○ Synthetic, PDE

● 17 datasets, 100+ GB
● Comparing “SOTA” and classical deep learning models

○ New models tend to be fine-tuned to univariate real life datasets
○ Classical deep learning models perform very well on various categories
○ Introduces Latent NLinear model

Solver-free latent ODE

● Benefits of LatentODE
○ Trajectories can be extrapolated into the future and the past, infinitely
○ Evaluable at arbitrary timestep

● Shortcomings of LatentODE
○ Slow training speed (use of sequential solver)
○ Slow inference speed (not that important in forecasting, though)

● A naively simple solution that retains the benefits and deals with the
shortcomings can be constructed

homogeneous linear ODE with constant coefficients

● We have used matrix exponentiation implemented in PyTorch, which is a
differentiable operation and has a low memory footprint

Architecture - SFMODE

● SFMODE - Solver-free multi-linear latent ODE
● A nonlinear encoder as in LatentODE (we use LSTM) outputs M states

● For N timestamps in each state is transformed in a just described manner to

using M different ODE learnable matrices

● using a single nonlinear decoder the final output is of the form

Technical remarks

● ODE matrices may be constrained
○ eg. skew symmetric matrix with diagonal helps in stabilizing the training

● Using many smaller ODE matrices helps to mitigate the cubic time complexity
of matrix exponentiation wrt. latent size

Results - chaotic

Results - MuJoCo

Results - PDE

Results - univariate real life

Results - multivariate real life

Further directions

● Explore VAE for generating trajectories
● Use multiple different matrix constraints

Thank you
Questions?

