SOLVER-FREE NEURAL ORDINARY DIFFERENTIAL EQUATIONS FOR FORECASTING LONG HORIZON TIME SERIES

Szymon Haponiuk

About me

- DL Algorithms team at NVIDIA
- Master's student at University of Warsaw
- Music
 - Playing, composing, producing
 - DL applications, AI assisted workflows

Outline

- Forecasting, long horizon, why?
- Quick LTSF landscape analysis, inc. NeuralODE/LatentODE
- Curriculum Learning for long horizon time series
- Unified Long-Horizon Time-Series Benchmark
- Solver-free latent ODE

in this talk: trajectory = series (loosely speaking)

Forecasting

- We will focus on forecasting without static/dynamic covariates
- Onput: sequence of history states, sequence of history timestamps, sequence of horizon timestamps
- Output: sequence of horizon states
- Usually history is a long sequence and horizon is short
 - eg. history of 192 points, horizon of 24 points
- LTSF: long-term time-series forecasting
 - eg. history of 500 points, horizon of 500 points

Why LTSF is hard?

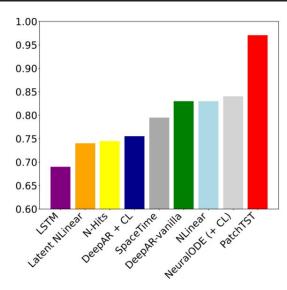
- Long range dependencies
- Computational complexity
 - transformer models have quadratic-time complexity
 - RNN-based models deal with vanishing/exploding gradients
- Compounding errors
- It may simply be impossible to predict that far into the future with such data...

LTSF Landscape analysis

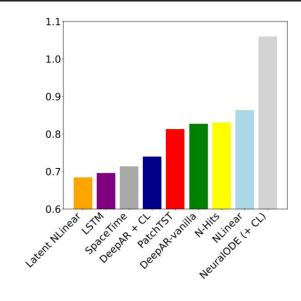
- Baselines
- Statistical methods
- Tree-based methods
- Classical deep learning
- Transformer variants
- State-space models
- N-Beats/N-Hits
- LTSF Linear
- LatentODE

LTSF Landscape analysis

1.4



1.2 1.0 0.8 0.6 0.4 0.2 0.0 N^{HIIS} IN² N^{ENTODE IN DeepRevalue (C) N^{ENTODE IN DEEPRRATE (C) DEEPRRATE (C) N^{ENTODE IN DEEPRRATE (C) DEEPRRATE}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

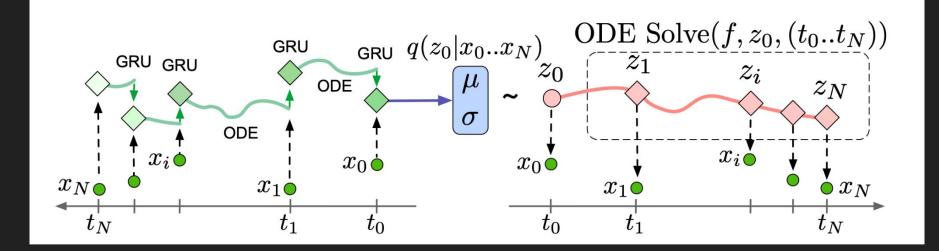


(a) MSE averaged over chaotic and MuJoCo datasets

(b) MSE averaged over univariate real-life datasets

(c) MSE averaged over the Weather dataset results

LatentODE



source: https://arxiv.org/abs/1907.03907

Curriculum Learning

- Boosts training convergence speed of models for LTSF
- Applicable to models with variable output length (eg. DeepAR, LatentODE)
- Three distinct phases
 - Short length pretraining
 - Increasing length training
 - Full length training

Short length pretraining

- Sampling short length subtrajectories from each trajectory in the dataset
- Exposing the model to various histories, not only the beginning of the trajectory
- Fixed number of epochs
- Model trained to forecast short horizon data usually converges much faster

Increasing length training

- Gradually increasing horizon length each epoch
- Similar to the Scheduled Sampling in https://arxiv.org/abs/1506.03099
- Connects first stage to the last stage

Full length training

- Standard way of training
- By the time the training reaches this stage, the model could be already quite far in the convergence
- Model has seen a larger set of series histories, which may lead to better generalization

Ablation on DeepAR

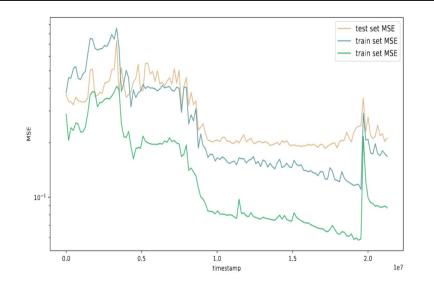


Figure 3.3: Simultaneous plots of training evaluation, test evaluation and the current training loss for DeepAR vanilla, lookback=720

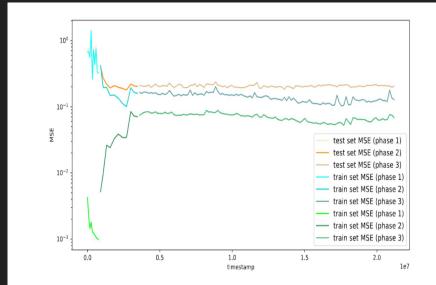


Figure 3.6: Simultaneous plots of training evaluation, test evaluation and the current training loss for DeepAR + CL, lookback=720, plots are divided into 3 curriculum learning phases

Unified Long-Horizon Time Series Benchmark

• 5 categories of time series

- Real-life, univariate
- Real-life, multivariate
- Synthetic, MuJoCo
- Synthetic, chaotic
- Synthetic, PDE
- 17 datasets, 100+ GB
- Comparing "SOTA" and classical deep learning models
 - New models tend to be fine-tuned to univariate real life datasets
 - Classical deep learning models perform very well on various categories
 - Introduces Latent NLinear model

Solver-free latent ODE

- Benefits of LatentODE
 - Trajectories can be extrapolated into the future and the past, infinitely
 - Evaluable at arbitrary timestep
- Shortcomings of LatentODE
 - Slow training speed (use of sequential solver)
 - Slow inference speed (not that important in forecasting, though)
- A naively simple solution that retains the benefits and deals with the shortcomings can be constructed

homogeneous linear ODE with constant coefficients

$$\frac{dx}{dt} = Ax$$

$$x(t) = x(t_0)e^{A(t-t_0)}$$

• We have used matrix exponentiation implemented in PyTorch, which is a differentiable operation and has a low memory footprint

Architecture - SFMODE

- SFMODE Solver-free multi-linear latent ODE
- A nonlinear encoder as in LatentODE (we use LSTM) outputs M states $z_1(t_0),\ldots,z_M(t_0)$
- For N timestamps in each state is transformed in a just described manner to $z_1(t_1), \ldots, z_M(t_1), \ldots, z_1(t_N), \ldots, z_M(t_N)$

using M different ODE learnable matrices A_1, \ldots, A_M

• using a single nonlinear decoder Dec the final output is of the form $(Dec(z_1(t_1)) + \dots + Dec(z_M(t_1)), \dots, Dec(z_1(t_N)) + \dots + Dec(z_M(t_Ns))))$

Technical remarks

- ODE matrices may be constrained
 - eg. skew symmetric matrix with diagonal helps in stabilizing the training
- Using many smaller ODE matrices helps to mitigate the cubic time complexity of matrix exponentiation wrt. latent size

Results - chaotic

		SFMODE		LSTM		N-H	N-Hits I		NLIN.	DEEP	AR CL	SpaceTime		NO	DE	NL	NEAR
	T	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DATASET	$\mid L \mid$																
LV.		$0.80{\pm}0.00$			14 N. 17 9 81												
		$0.78 {\pm} 0.00$															
	1000	$0.64{\pm}0.00$	$0.50{\pm}0.00$	0.63	0.49	0.71	0.55	0.70	0.53	0.64	0.50	0.87	0.67	0.78	0.60	0.87	0.67
	96	$0.64{\pm}0.01$	$0.57{\pm}0.01$	0.67	0.59	0.64	0.55	0.68	0.58	0.80	0.69	0.74	0.64	0.96	0.79	0.82	0.70
MG.	500	$0.67 {\pm} 0.00$	$0.60{\pm}0.00$	0.66	0.58	0.74	0.63	0.80	0.67	0.70	0.62	0.81	0.71	0.88	0.76	0.90	0.76
	1000	$0.56{\pm}0.02$	$0.52{\pm}0.01$	0.49	0.46	0.73	0.64	0.78	0.66	0.96	0.60	0.99	0.82	0.86	0.75	0.92	0.77
	96	$0.51{\pm}0.01$	$0.48 {\pm} 0.00$	0.56	0.51	0.48	0.43	0.54	0.49	0.61	0.55	0.63	0.57	0.76	0.67	0.69	0.60
Lorenz	500	$0.62 {\pm} 0.01$	$0.57{\pm}0.01$	0.60	0.54	0.58	0.52	0.61	0.53	0.67	0.60	0.76	0.68	0.84	0.74	0.84	0.73
	1000	$0.54{\pm}0.00$	$0.51{\pm}0.00$	0.47	0.43	0.67	0.59	0.71	0.62	0.83	0.63	0.97	0.82	0.80	0.70	0.88	0.75
AVG.		0.64	0.55	0.63	0.53	0.69	0.57	0.71	0.59	0.76	0.60	0.82	0.69	0.85	0.71	0.85	0.70

Results - MuJoCo

	1 1	SFM	DEEPAR CL LSTM				SPACETIME LAT. NLI				N. N-HITS		NLINEAR		DEEP.	AR v.	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DATASET	$\mid L \mid$																
	96	$0.80 {\pm} 0.00$	$0.72{\pm}0.00$	0.79	0.71	0.80	0.72	0.80	0.72	0.80	0.72	0.82	0.73	0.81	0.73	0.90	0.79
CHEETAH(S)			$0.70{\pm}0.00$							1							
	500	$0.69 {\pm} 0.00$	$0.65{\pm}0.00$	0.68	0.64	0.68	0.65	0.70	0.66	0.70	0.66	0.77	0.69	0.73	0.68	0.94	0.82
	96	$0.72 {\pm} 0.00$	$0.48{\pm}0.00$	0.72	0.48	0.72	0.48	0.73	0.49	0.73	0.48	0.74	0.49	0.75	0.51	0.72	0.48
HOPPER(S)	250	$0.75 {\pm} 0.00$	$0.49{\pm}0.00$	0.75	0.48	0.74	0.48	0.77	0.50	0.77	0.50	0.79	0.52	0.81	0.53	0.75	0.48
	500	$0.63 {\pm} 0.00$	$0.45{\pm}0.00$	0.63	0.44	0.63	0.44	0.67	0.47	0.68	0.48	0.69	0.50	0.73	0.52	0.65	0.45
	96	$0.86 {\pm} 0.00$	$0.65{\pm}0.00$	0.86	0.65	0.86	0.64	0.87	0.65	0.87	0.65	0.88	0.65	0.88	0.66	0.87	0.65
$\operatorname{walker}(\mathrm{S})$	250	$0.85{\pm}0.00$	$0.62{\pm}0.00$	0.85	0.62	0.85	0.62	0.87	0.64	0.89	0.65	0.91	0.67	0.94	0.70	0.85	0.62
	500	$0.69 {\pm} 0.00$	$0.51{\pm}0.00$	0.68	0.50	0.69	0.50	0.76	0.57	0.75	0.56	0.80	0.59	0.83	0.63	0.69	0.50
AVG.		0.75	0.59	0.75	0.58	0.75	0.58	0.77	0.60	0.77	0.60	0.80	0.62	0.81	0.63	0.81	0.62

Results - PDE

	SFMODE		PATO	снТ	SPACE	еТіме	DEEPA	AR CL	LSTM		LAT.	NLINEAR	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DATASET	$\mid L$				0								
		$ 0.95{\pm}0.00$											
KS.	250	$0.94{\pm}0.00$	$0.80{\pm}0.00$	1.06	0.85	0.97	0.82	0.90	0.77	0.97	0.81	1.00	0.83
	500	0.94 ± 0.01	$0.80{\pm}0.01$	1.04	0.84	0.97	0.82	0.86	0.74	0.94	0.79	0.99	0.82
	96	0.82 ± 0.01	$0.76{\pm}0.01$	0.46	0.52	0.57	0.63	1.01	0.89	0.74	0.71	0.83	0.78
СН.	250	$0.92{\pm}0.12$	$0.82{\pm}0.07$	0.36	0.45	0.49	0.58	0.59	0.64	0.73	0.71	0.87	0.79
	500	$ 0.91{\pm}0.24$	$0.82{\pm}0.15$	0.27	0.39	0.79	0.74	0.50	0.57	0.67	0.66	0.89	0.80
AVG.		0.91	0.80	0.71	0.65	0.79	0.73	0.80	0.73	0.84	0.75	0.93	0.81

Results - univariate real life

		SFM	N-Hits Lat.			NLIN.			PATCHT		SpaceT.		LSTM		DEEP	AR CL	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DATA.	L																
	96	$0.22{\pm}0.00$	$0.33{\pm}0.00$	0.21	0.33	0.22	0.33	0.23	0.35	0.22	0.34	0.21	0.33	0.24	0.35	0.23	0.34
ETT	336	$0.18{\pm}0.01$	$0.31{\pm}0.01$	0.17	0.30	0.18	0.30	0.19	0.32	0.17	0.31	0.17	0.31	0.21	0.33	0.18	0.32
	720	0.15±0.01	$0.28{\pm}0.01$	0.15	0.29	0.15	0.28	0.16	0.29	0.15	0.29	0.17	0.31	0.17	0.30	0.18	0.31
M4	96	$0.22{\pm}0.00$	$0.24{\pm}0.00$	0.21	0.22	0.22	0.22	0.25	0.25	0.21	0.21	0.20	0.22	0.22	0.23	0.23	0.24
1014	168	$0.14{\pm}0.00$	$0.17{\pm}0.00$	0.12	0.16	0.14	0.16	0.14	0.17	0.13	0.15	0.12	0.16	0.14	0.16	0.13	0.17
ETT (L)	1000	$0.20{\pm}0.03$	$0.34{\pm}0.03$	0.17	0.30	0.16	0.29	0.16	0.30	0.16	0.30	1.02	0.92	0.19	0.32	0.19	0.32
AVG.		0.18	0.28	0.17	0.27	0.18	0.27	0.19	0.28	0.17	0.27	0.32	0.37	0.20	0.28	0.19	0.28

Results - multivariate real life

	Ĩ	SFM	LAT. NLIN. LSTM					SPACET DEEPAR CL			DEEPAR V. PATCH			снТ	HT N-HITS		
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
DATA.	$\mid L$																
РВ.	144	0.65±0.02	$0.36{\pm}0.01$	0.68	0.41	0.67	0.36	0.69	0.39	0.71	0.38	0.73	0.38	N/A	N/A	N/A	N/A
		0.71±0.01															
WEAT.		$0.69 {\pm} 0.01$															
	500	0.65±0.00	0.39±0.00	0.66	0.41	0.67	0.41	0.69	0.43	0.72	0.43	0.73	0.44	0.72	0.40	0.83	0.45
AVG.		0.67	0.40	0.68	0.42	0.69	0.41	0.71	0.42	0.73	0.43	0.80	0.47	0.81	0.43	0.83	0.46

Further directions

- Explore VAE for generating trajectories
- Use multiple different matrix constraints

Thank you Questions?