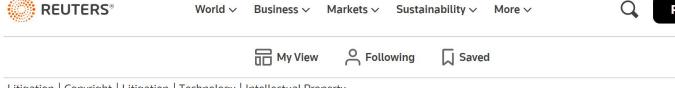


Towards More Realistic Membership Inference Attacks on Large Diffusion Models

Antoni Kowalczuk^{1,2*}, Jan Dubiński^{1*}, Stanisław Pawlak¹, Przemysław Rokita¹, Tomasz Trzciński^{1,3,4}, Paweł Morawiecki⁵


*equal contribution

Motivation

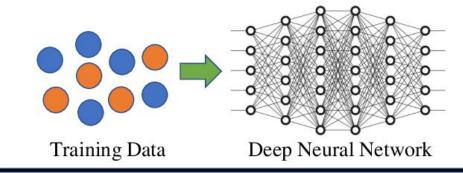
- Data Privacy
- Copyright issues
- Novel research topic

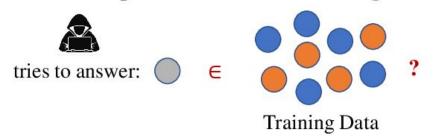
Litigation | Copyright | Litigation | Technology | Intellectual Property

Getty Images lawsuit says Stability AI misused photos to train AI

By Blake Brittain

February 6, 2023 6:32 PM GMT+1 · Updated 9 months ago




Was this example in the

training set?

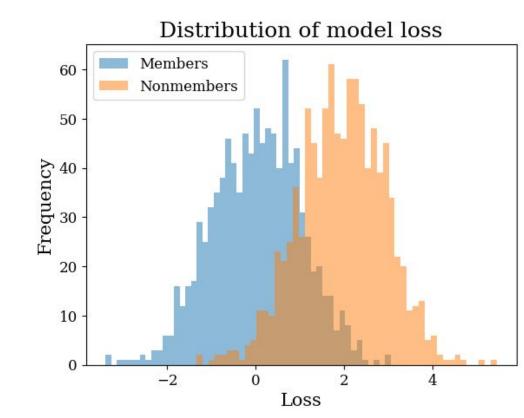
Training of Target Model

Membership Inference Attack on Target Model

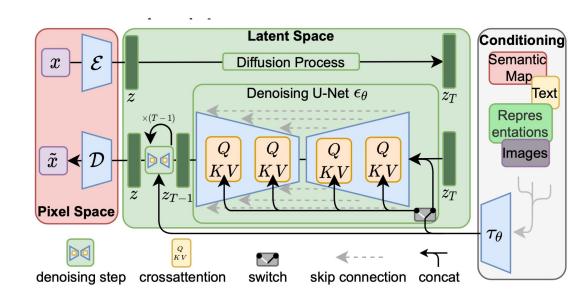
Members

- Train set
- Identifying them is the goal of a MIA
- Potentially: copyrighted artwork

Nonmembers


- Not used during training
- Ideally: validation/test set

MIA is a classification task

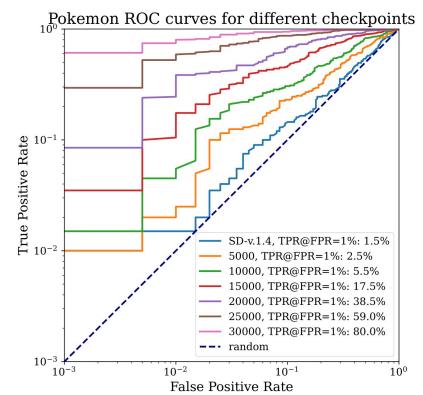

- If loss < threshold then sample is a member
- Due to overfitting
- TPR@FPR=1%

- Large LatentDiffusion Model
- LAION-5B
- Fully open-source*
- SOTA Text2Image**

Issues

- Current cost of training: \$100k
- **150 000** GPU hours
- No validation set!

Problem: We do not have a natural nonmembers set!


Option 1: Fine-tune Stable Diffusion on a smaller dataset

Pros

- cheap
- nonmembers easy to get
- easy to benchmark

Cons

- flawed
- trivial problem
- not applicable to real life scenarios

Option 2: Train Stable Diffusion from scratch

Pros

- nonmembers easy to get
- correctexperimental setup

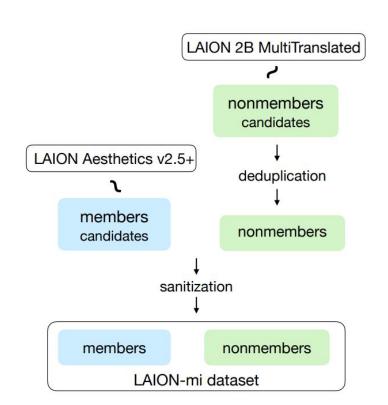
Cons

- extremely expensive
- impractical

Option 3: Obtain nonmembers from a different source

Pros

- cheap
- data easy to collect in our case

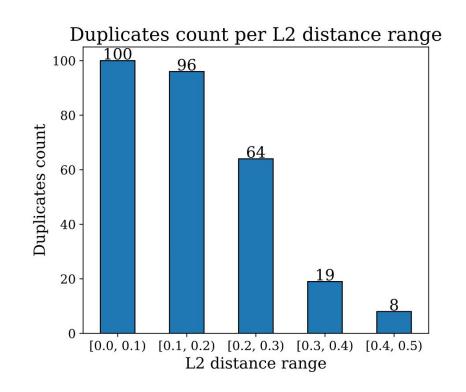

Cons

- possible distribution mismatch
- in effect: could lead to incorrect results

Solution: LAION-mi dataset

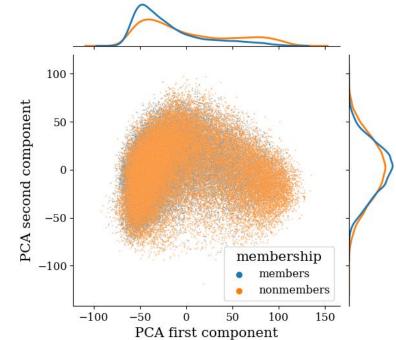
- Do not modify the original Stable Diffusion model
- Obtain the nonmembers set from other source
- Alleviate the distribution mismatch problem

Challenge: Duplicates


- 30% in LAION-2BEN
- Effect: nonmembers set contaminated with member samples

Solution: Deduplication

- Query LAION-5B KNN-Index
- 2. Get duplicate candidates
- 3. Compute distances
- 4. Apply threshold to filter out duplicates



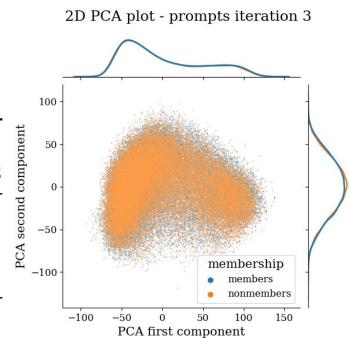
Challenge: Distribution Mismatch

- 2D PCA plot prompts before sanitization

- Images and descriptions
- **Evaluation:**
 - Visual (PCA)
 - FID
 - Training a classifier
- Main focus on descriptions

Solution: Sanitization

Start with a train set with half members and half nonmembers


- Until almost random accuracy on the train set, repeat:
- 1. Train a classifier on a train set
- 2. Add a new classifier to all classifiers
- 3. Create a new train set by filtering out members, for which any of the classifiers classifies them as member, and use all nonmembers

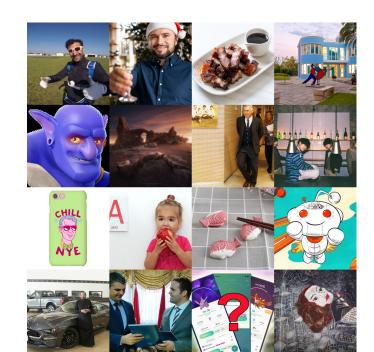
Results

LAION-mi: 40k members, 40k nonmembers

	FID		
Data subset	TEXT	IMAGES	
MEMBERS INTERNAL - RANDOM	9.84	7.00	
Members internal - sanitized	9.77	7.06	
NONMEMBERS INTERNAL	9.73	7.01	
COMPARATIVE - RANDOM	66.43	13.90	
COMPARATIVE - SANITIZED	13.54	8.87	

Evaluation on Stable Diffusion: Setup

Loss Threshold Attack


- Model Loss
- Pixel Error
- Latent Error

Datasets + Models

- LAION-mi + StableDiffusion
- POKEMON + fine-tuned
 Stable Diffusion on
 POKEMON dataset

Datasets

Results

			TPR@FPR=1%.↑	
SCENARIO	Loss	МЕТНОО	LAION-MI	POKEMON
WHITE-BOX		BASELINE LOSS THR.	$1.92\% \pm 0.59$	$80.9\% \pm 2.27$
	MODEL LOSS	REVERSED NOISING	$2.51\% \pm 0.73$	$97.3\% \pm 0.93$
		PARTIAL DENOISING	$2.31\% \pm 0.61$	$94.5\% \pm 1.34$
		REVERSED DENOISING	$2.25\% \pm 0.64$	$91.5\% \pm 1.63$
		REVERSED NOISING	$1.26\% \pm 0.62$	$11.5\% \pm 1.84$
	LATENT ERROR	PARTIAL DENOISING	$2.42\% \pm 0.62$	$99.5\% \pm 0.4$
		REVERSED DENOISING	$2.17\% \pm 0.64$	$61.1\% \pm 2.74$
		REVERSED NOISING	$1.90\% \pm 0.51$	8.36%±1.66
	PIXEL ERROR	REVERSED DENOISING	$2.03\% \pm 0.55$	$12.0\% \pm 1.97$
		PARTIAL DENOISING	$1.75\% \pm 0.68$	$25.38\% \pm 2.55$
GREY-BOX	LATENT ERROR	GENERATION FROM PROMPT	0.93%±0.41	$7.15\% \pm 1.5$
BLACK-BOX	PIXEL ERROR	GENERATION FROM PROMPT	$0.35\% \pm 0.19$	$12.0\% \pm 1.9$

- MIAs are still hard, or impractically expensive
- We point out flawed methodology
- Our contribution: LAION-mi dataset & evaluation protocol