

GARAGE: Generative-Augmented Retrieval Assisting Generation Enhancement

Krzysztof Jankowski¹* Michał Janik^{1,2}* Michał Grotkowski¹* Antoni Hanke¹* Grzegorz Preibisch^{1,3}

*equal contribution ¹University of Warsaw ²Allegro ³Deepflare

Contact: kj418274@students.mimuw.edu.pl

Introduction

Large Language Models like ChatGPT have shown to be of great use, but in tasks requiring **factual knowledge** they display two major issues:

hallucination

• costly model updates to existing knowledge via fine-tuning

These issues can be addressed by performing **document retrieval** on a preexisting knowledge database, that provides the LLM with relevant passages, to generate an informed answer. Our work combines multiple existing **machine learning and classical** techniques to improve document retrieval and answer generation, resulting in a powerful ensemble that **outperforms previous popular models** in domain-specific question answering.

Hallucination mitigation

Augmenting LLMs with an external nonparametric memory (knowledge base) significantly reduces hallucination.

Without passages, ChatGPT often hallucinates answers, but with provided passages, it generates answers based on them **97% of the time**.

If the answer is not in the passages, Chat-GPT avoids responding in one-third of the cases. Providing passages shifts Chat-GPT from guessing to answering based on sources, addressing safety concerns about hallucinations.

Building Blocks

In the conducted experiment, we focus on combining previous approaches that address different stages of the retrieval-based question-answering pipeline:

- Generation-Augmented Retrieval (GAR)¹ (pre-retrieval stage) a technique that given a query, tries to generate relevant contexts that are then used to-gether with the original query in the retrieval stage
- RAG² (retrieval stage) a deep learning-based model that retrieves relevant passages based on similarity between query and passage embeddings
- **BM25**³ (retrieval stage) a **classical retriever** model based on the statistical count of words and inverse document frequency

Experimental setup

^o N/A (no passages No Yes supplied) Answer contained in passages **Figure 3:** Percentage of unanswered questions by ChatGPT.

We benchmark our model on CovidQA - the same subset of CORD-19 dataset⁴ consisting of **5,000 medical articles** used in baseline models: RAG and fine-tuned RAG.⁵

We use top-*k* accuracy metrics for retrieved passages, and exact match and F1 score for answer generation. All the experiments are conducted on a **single 16GB GPU**.

Results

We benchmark GARAGE against the original RAG and its improved RAGend2end-QA variant, in passage retrieval and answer generation. Additionally, we compare it to ChatGPT in answer generation.

Our model **outperforms other models** in almost all metrics. We conduct experiments for **various combinations** of retrievers and their proportions of contributed passages to the final top-*k* passages.

Retriever Top-5 Top-20

20 Method

EM F1

Figure 1: RAG, BM25 and GAR details.

Architecture

Our novel approach, **GARAGE**, improves the RAG setup in two ways: firstly, before the retrieval stage, we **augment** the query via the **GAR** encoder-decoder model (BERT + BART), resulting in more keywords being passed to the retrievers. We then propose combining the passages retrieved by a RAG **neural document retriever** with those retrieved by **BM25**.

These models create a **powerful ensemble of retrievers** and their output is passed to an instruction fine-tuned LLM (ChatGPT) with special prompt engineering.

BM25 + RAG	22.83	32.92
GAR (RAG)	8.33	11.05
80%(BM25+RAG) +	24.48	35.98
20%GAR(BM25)		
BM25	22.83	29.86
RAG	10.48	15.64
RAG-end2end-QA	19.85	26.91

Table 1: Top-k accuracy fordocument retrieval onCovidQA.

wiethou		L L
BM25 + BART	5.78	13.56
GAR (RAG)	1.87	5.59
40%BM25 + 60%RAG +	2.21	18.74
ChatGPT		
ChatGPT zero-shot	0.74	12.32
RAG	1.87	6.17
RAG-end2end-QA	8.08	18.38

Table 2: Exact Match and F1 scorewith top 5 retrieved passages (exceptChatGPT zero-shot).

Efficiency of Hybrid Passage Retrieval

By integrating top-ranked passages from **both BM25 and RAG retrievers**, we observed a notable enhancement in retrieval accuracy. This improvement is especially pronounced in unfamiliar and challenging domains. Our hybrid approach consistently surpasses other methods across various passage numbers.

Figure 4: Top-k accuracy of retrievers.

References

Summary

We show that by **combining classical and neural** retrieval approaches in domainspecific question answering we can **outperform** fine-tuned models with a significantly **smaller compute budget**. Thanks to this approach popular LLMs can hallucinate less, be more specific in domain question answering, and give users more control of the model's knowledge base.

¹Y. Mao, Y. Mao, P. He, X. Liu, X. Liu, Y. Shen, J. Gao, J. Gao, J. Han, and W. Chen, "Generation-augmented retrieval for open-domain question answering," arXiv: Computation and Language, 2020.

² P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, "Retrieval-augmented generation for knowledge-intensive NLP tasks," CoRR, vol. abs/2005.11401, 2020.

³S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford, "Okapi at trec-3.," pp. 0–, 01 1994.

⁴L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Burdick, D. Eide, K. Funk, Y. Katsis, R. Kinney, Y. Li, Z. Liu, W. Merrill, P. Mooney, D. Murdick, D. Rishi, J. Sheehan, Z. Shen, B. Stilson, A. Wade, K. Wang, N. X. R. Wang, C. Wilhelm, B. Xie, D. Raymond, D. S. Weld, O. Etzioni, and S. Kohlmeier, "Cord-19: The covid-19 open research dataset," 2020.

⁵S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. Rana, and S. Nanayakkara, "Improving the domain question answering," *Transactions of the Association for Computational Linguistics*, 2022.

