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▶ HMM
π, A - Markov chain, B - emission matrix,

▶ GaussianHMM
π, A - Markov chain, B - family of Gaussian distributions,

▶ DenseHMM [1] & GaussianDenseHMM [2]
π, A - obtained from embedding, B - emission matrix or a
family of Gaussian distributions,

▶ FlowHMM [3]
π, A - Markov chain, B - family of normalizing flow models,

▶ ...

Co-occurrence matrix for discrete emission
Empirical co-occurrence matrix:

Qgt
vw = #{t :yt =v ,yt+1=w}

T−1

Example:
Sequence from HMM (letters are observations, colors are hid-
den states) with underlined co-occurrences of the values a and
b:

a, c, a, b, b, c, a, a, b, c, b, c, d , c, b, b.
Counts the co-occurrences for each pair of values:

a b c d
a 1 2 1 0
b 0 2 3 0
c 2 2 0 1
d 0 0 1 0

Co-occurrence matrix derived from model parame-
ters:

Qvw = P(Yt = v , Yt+1 = w)

=
N∑

i=1

N∑
j=1

P(Xt = i)Bi (v )AijBj (w).

Let us assume that π is the stationary distribution of the Markov
chain:

Qvw =
N∑

i=1

N∑
j=1

πiBiv AijBjw ,

Q = BT SB, where Sij = πiAij (1)

Discretization of continuous values
Let us define a (minimal) hypercube Ŷ containing all observed
values y1:T and fix MD ∈ N+. Let us define a discrete set
YD = {vD

1 , ... , vD
MD}, vD

i ∈ Ŷ. Discretization [4] is a function
D : Rm −→ YD:

D(y ) = arg min
v∈YD

∥y − v∥.
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One needs also to discretize the probabilities; see Eq. (3), (4).

Training schema
▶ EM
▶ GD

We can use SGD, Adam, etc., for optimizing

S, B = arg minS̃,B̃

∥∥∥∥∥Qgt − Q

∥∥∥∥∥.

We optimize uncontrained matrices S̃, B̃ and con-
vert them via softmax:

S, B = arg min
S̃,B̃

∥∥∥∥∥Qgt−

(
exp(B̃)∑M

w=1 exp(B̃.w )

)T

exp(S̃)∑N
i=1
∑N

j=1 exp(S̃ij )

exp(B̃)∑M
w=1 exp(B̃.w )

∥∥∥∥∥
▶ NMF [5]

We will use the pseudo inverses (from Eq. (1)):

S = B−1Q(BT )−1, (2a)

B = ((SB)−1Q)T , (2b)

B = Q(BT S)−1. (2c)

The update procedure is:

pseudo inverse > ReLU > softmax.

In each iteration, we update the following:
▶ S with Eq. (2a)
▶ B with Eq. (2b)
▶ S with Eq. (2a)
▶ B with Eq. (2c)

Exact probabilities in discretization

P(D(y ) = vD|x = i) =
∫
{y :D(y )=vD}

Bi (y )dy (3)
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▶ find the region boundaries (the set of observations
resulting in a given discrete value)

▶ integrate the PDF within the region

Approximate probabilities in discretization

P(D(y ) = vD|x = i) ≈ Bi (vD)∑
wD∈YD Bi (wD)

(4)
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▶ calculate the PDF function in the discrete values
▶ normalize the obtained PDF values (to assure obtain-

ing a discrete probability distribution)

Comparison of exact and approximate probabilities
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dTV (µ, ν) = 1
2

∑
i |µ(vD

i ) − ν(vD
i )|, KL(µ∥ν) =

∑
i µ(vD

i ) log µ(vD
i )

ν(vD
i )

Conclusions
exact approx

fast to compute
available for all distributions
domain aware
accurate

▶ Many multivariate distributions don’t have analytical
formulas for CDFs (thus, we estimate the exact prob-
abilities with Monte Carlo methods, which is time-
consuming to perform in each training step)

▶ The approximation of probabilities disrupts the distri-
bution of discrete values visibly (over 10%) and may
affect the learning process.

▶ Exact values result in better likelihood than approxi-
mate.

▶ The random uniform grid is expected to work better
than the ordinary grid.

▶ Discrete likelihood is incomparable to continuous
likelihood.

References
[1] Joachim Sicking, Maximilian Pintz, Maram Akila, and Tim Wirtz.

Densehmm: Learning hidden markov models by learning dense represen-
tations, 2020.

[2] Klaudia Balcer and Piotr Lipinski. Extending densehmm with continuous
emission. ICONIP, 2023.

[3] Pawel Lorek, Rafał Nowak, Tomasz Trzcinski, and Maciej Zieba. FlowHMM:
Flow-based continuous hidden markov models. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[4] Klaudia Balcer. Flowhmm. discretisation in the co-occurrence-based learn-
ing algorithm. Master’s thesis, University of Wrocław, 2023.

[5] Balaji Lakshminarayanan and Raviv Raich. Non-negative matrix factoriza-
tion for parameter estimation in hidden markov models. In 2010 IEEE Inter-
national Workshop on Machine Learning for Signal Processing. IEEE, aug
2010.

Acknowledgement
This work is a part of a national research project on discovering hidden structure
in large datasets (supported by the Polish National Science Centre (NCN)
under grant OPUS 18 no. 2019/35/B/ST6/04379).

I acknowledge the support of G-Research in the form of a Travel Grant, which

enabled me to attend this conference.


