Co-occurrence-based learning

Klaudia Balcer, klaudia.balcer@cs.uni.wroc.pl
Computational Intelligence Research Group, Institute of Computer Science, University of Wrocław

Hidden Markov Model

- HMM

π, A - Markov chain, B - emission matrix,

- GaussianHMM
π, A - Markov chain, B - family of Gaussian distributions,
- DenseHMM [1] \& GaussianDenseHMM [2]
π, A - obtained from embedding, B - emission matrix or a
family of Gaussian distributions,
- FlowHMM [3]
π, A - Markov chain, B - family of normalizing flow models,
- ...

Discretization of continuous values

Let us define a (minimal) hypercube $\hat{\mathcal{Y}}$ containing all observed values $y_{1: T}$ and fix $M^{\mathcal{D}} \in N_{+}$. Let us define a discrete set $\mathcal{Y}^{\mathcal{D}}=\left\{v_{1}^{\mathcal{D}}, \ldots, v_{M^{\mathcal{D}}}^{\mathcal{D}}\right\}, v_{i}^{\mathcal{D}} \in \hat{\mathcal{Y}}$. Discretization [4] is a function $\mathcal{D}: R^{m} \longrightarrow \mathcal{Y}^{\mathcal{D}}:$

One needs also to discretize the probabilities; see Eq. (3), (4).

Training schema

- EM
- GD

We can use SGD, Adam, etc., for optimizing $\mathbf{S}, B=\arg \min _{\tilde{\mathbf{s}}, \tilde{B}}\left\|\mathbf{Q}^{g t}-\mathbf{Q}\right\|$.
We optimize uncontrained matrices $\tilde{\mathbf{S}}, \tilde{B}$ and convert them via softmax:

$$
\begin{aligned}
\mathbf{S}, B=\underset{\tilde{\mathbf{S}}, \tilde{B}}{\arg \min } \| \mathbf{Q}^{g t}- & \left(\frac{\exp (\tilde{B})}{\sum_{w=1}^{M} \exp \left(\tilde{B}_{. w}\right)}\right)^{T} \\
& \frac{\exp (\tilde{\mathbf{S}})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \exp \left(\tilde{\mathbf{S}}_{i j}\right)} \\
& \frac{\exp (\tilde{B})}{\sum_{w=1}^{M} \exp \left(\tilde{B}_{. w}\right)} \|
\end{aligned}
$$

- NMF [5]

We will use the pseudo inverses (from Eq. (1)):

$$
\begin{gather*}
\mathbf{S}=B^{-1} \mathbf{Q}\left(B^{T}\right)^{-1} \tag{2a}\\
B=\left((\mathbf{S} B)^{-1} \mathbf{Q}\right)^{T}, \tag{2b}\\
B=\mathbf{Q}\left(B^{\top} \mathbf{S}\right)^{-1} . \tag{2c}
\end{gather*}
$$

The update procedure is:
pseudo inverse > ReLU > softmax.
In each iteration, we update the following:

- S with Eq. (2a)
- B with Eq. (2b)
- S with Eq. (2a)
- B with Eq. (2c)

Co-occurrence matrix for discrete emission

Empirical co-occurrence matrix:
$\mathbf{Q}_{V w}^{g t}=\frac{\#\left\{t: y_{t}=v, y_{t+1}=w\right\}}{T-1}$
Example:
Sequence from HMM (letters are observations, colors are hidden states) with underlined co-occurrences of the values a and b :
$a, c, a, b, b, c, a, a, b, c, b, c, d, c, b, b$.
Counts the co-occurrences for each pair of values:

	a	b	c	d
a	1	$\underline{2}$	1	0
b	0	2	3	0
c	2	2	0	1
d	0	0	1	0

Co-occurrence matrix derived from model parameters:

$$
\begin{aligned}
\mathbf{Q}_{v w} & =P\left(Y_{t}=v, Y_{t+1}=w\right) \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N} P\left(X_{t}=i\right) B_{i}(v) \mathbf{A}_{i j} B_{j}(w) .
\end{aligned}
$$

Let us assume that π is the stationary distribution of the Markov chain:

$$
\begin{gathered}
\mathbf{Q}_{v w}=\sum_{i=1}^{N} \sum_{j=1}^{N} \pi_{i} B_{i v} \mathbf{A}_{i j} \boldsymbol{B}_{j w}, \\
\mathbf{Q}=B^{T} \mathbf{S} B, \text { where } \mathbf{S}_{i j}=\pi_{i} A_{i j}(1)
\end{gathered}
$$

Exact probabilities in discretization

- find the region boundaries (the set of observations resulting in a given discrete value)
- integrate the PDF within the region

Approximate probabilities in discreti

$$
\begin{equation*}
P\left(\mathcal{D}(y)=v^{\mathcal{D}} \mid x=i\right) \approx \frac{B_{i}\left(v^{\mathcal{D}}\right)}{\sum_{w^{\mathcal{D}} \in \mathcal{Y}^{\mathcal{D}}} B_{i}\left(w^{\mathcal{D}}\right)} \tag{4}
\end{equation*}
$$

- calculate the PDF function in the discrete values - normalize the obtained PDF values (to assure obtaining a discrete probability distribution)

Comparison of exact and approximate probabilities

Conclusions

	exact	approx
fast to compute	\mathbf{X}	\checkmark
available for all distributions	\mathbf{X}	\checkmark
domain aware	\checkmark	\mathbf{X}
accurate	\checkmark	\mathbf{X}

- Many multivariate distributions don't have analytical formulas for CDFs (thus, we estimate the exact probabilities with Monte Carlo methods, which is timeconsuming to perform in each training step)
- The approximation of probabilities disrupts the distribution of discrete values visibly (over 10\%) and may affect the learning process.
- Exact values result in better likelihood than approximate.
- The random uniform grid is expected to work better than the ordinary grid.
- Discrete likelihood is incomparable to continuous likelihood.

References

[1] Joachim Sicking, Maximilian Pintz, Maram Akila, and Tim Wirtz. Densehmm: Learning hidden markov models by learning dense representations, 2020.
[2] Klaudia Balcer and Piotr Lipinski. Extending densehmm with continuous emission. ICONIP, 2023.
[3] Pawel Lorek, Rafał Nowak, Tomasz Trzcinski, and Maciej Zieba. FlowHMM: Flow-based continuous hidden markov models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.
[4] Klaudia Balcer. Flowhmm. discretisation in the co-occurrence-based learning algorithm. Master's thesis, University of Wrocław, 2023.
[5] Balaji Lakshminarayanan and Raviv Raich. Non-negative matrix factorization for parameter estimation in hidden markov models. In 2010 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, aug
2010.

Acknowledgement

This work is a part of a national research project on discovering hidden structure in large datasets (supported by the Polish National Science Centre (NCN) under grant OPUS 18 no. 2019/35/B/ST6/04379).
I acknowledge the support of G-Research in the form of a Travel Grant, which enabled me to attend this conference.

