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Hidden Markov Model
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» HMM
7w, A - Markov chain, B - emission matrix,
» GaussianHMM
m, A - Markov chain, B - family of Gaussian distributions,
» DenseHMM [1] & GaussianDenseHMM [2]
w, A - obtained from embedding, B - emission matrix or a
family of Gaussian distributions,
» FlowHMM |[3]
7, A - Markov chain, B - family of normalizing flow models,

Discretization of continuous values

Co-occurrence-based learning

_ ~ How much information do we lose
while using approximate probabilties of discrete values?
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Co-occurrence matrix for discrete emission

Empirical co-occurrence matrix:

Example:
Sequence from HMM (letters are observations, colors are hid-
den states) with underlined co-occurrences of the values a and
b:

a,c,ab,b,c,aab,c,b,c,d,c,b,b.

Counts the co-occurrences for each pair of values:
a c|d
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Co-occurrence matrix derived from model parame-
ters:

N N
=YY P = DB()A;B(w).
i=1 j=1

Let us assume that = is the stationary distribution of the Markov
chain:

7iBivAjjBjw,

Q = B'SB, where S; = m;A;(1)

Let us define a (minimal) hypercube ) containing all observed
values y;.7 and fix MP € N,. Let us define a discrete set
VP ={vP,...,vin}, vP € V. Discretization [4] is a function
D:R™ — )P

D(y) =argmin ||y — v|.
ve)yD

discretized sequence
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One needs also to discretize the probabilities; see Eq. (3), (4).

Training schema

> EM
» GD
We can use SGD, Adam, etc., for optimizing
S, B =argming 5 ||Q% — Q||.
We optimize | uncontrained matrices S, B| and con-
vert them via softmax:
B T
S, B = argmin ||QY ( Mexp( )~ )
§,B 2 _w=1€XP(B.w)
exp(S)
ZII\_/1 jl\=l1 exp(Sj)
exp(B)
leﬂ exp(B.w)
» NMF [5]
We will use the pseudo inverses (from Eq. (1)):
S=8"'QB") (2a)
B=((SB)~'Q)’, (2b)
B=Q(B'S)"". (2¢)

The update procedure is:
pseudo inverse > ReLU > softmax.

In each iteration, we update the following:
» S with Eq. (2a

» B with Eq. (
» S with Eq. (
» B with Eq. (

Exact probabilities in discretization

PDY) = vlx =i = [
{yD(y)=vP}

Data, nodes & CDF values
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» find the region boundaries (the set of observations
resulting in a given discrete value)
» integrate the PDF within the region

Approximate probabilities In discreti

Bi(v®)

PDW) = vV Ix = i) = x g
wPey®? =i

(4)

Data, nodes & PDF values

0Qata, nodes & normalized PDF values (PMF for discrete)
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» calculate the PDF function in the discrete values
» normalize the obtained PDF values (to assure obtain-
Ing a discrete probability distribution)
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prob_type = exact prob_type = approx
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metric = KL
¢
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metric = dTV

100

value

10—1 P

OoG RU oG RU

D

drv(p,v) = § 32 [(vP) = v(vP)], KL(ullv) = 32, m(vP) log 4]
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Conclusions References

exact | approx
fast to compute X v
available for all distributions | X v
domain aware v X
accurate v X

» Many multivariate distributions don’t have analytical
formulas for CDFs (thus, we estimate the exact prob-
abilities with Monte Carlo methods, which is time-
consuming to perform in each training step)

» The approximation of probabilities disrupts the distri-
bution of discrete values visibly (over 10%) and may
affect the learning process.

» Exact values result in better likelihood than approxi-
mate.

» The random uniform grid is expected to work better
than the ordinary grid.

» Discrete likelihood is incomparable to continuous
likelihood.
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