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CERN uses Large Hadron Collider (LHC) to study

fundamental matter properties in High Energy Physics

experiments.

Understanding and analysing these experiments requires

running complex simulations which are computationally very

demanding.

Leveraging generative machine learning provides an efficient

alternative to existing approaches.

We focus on simulating the Zero Degree Calorimeter (ZDC)

in the ALICE experiment, exploring multiple approaches

Joint Generative Adversarial Networks model speeds up the

simulation process by generating data for multiple calorimeter

devices simultaneously.

Conditional diffusion models offer dynamic simulation quality

control.

Conditional control mechanism allows for independent

control over generated output.
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Figure 1. Fast simulation overview

Take-aways

Machine learning generative models provide an efficient

alternative to current simulation methods used in High

Energy Physics experiments at CERN.

Joint model reduces inference time by ~50% while providing

sample generation quality comparable to separate models

For diffusion models the number of denoising steps used

during inference introduces a natural mechanism to control

simulation time and quality trade-off.

Advanced control mechanisms allow for precise control of the

generated outcome, increasing the fidelity of the simulation.

Joint model for simulating multiple calorimeter devices simultaneously

Figure 2. ZDC response simulation examples

The solution employs a modified SDI-GAN

architecture which differs from the standard

conditional GAN by accounting for different

levels of variance of samples corresponding to

different conditional inputs.

The proposed system has two separate outputs

for the generator and two separate inputs and

outputs for the discriminator.

Joint model achieves competitive results relative

to distinct models.

Joint model provides efficient inference

significantly speeding up generation of samples.

The utilization of a single model for multiple

calorimeter devices optimizes the simulation

process, simplifies integration and reduces

overall complexity.

This approach leverages inherent correlations of

data samples from two calorimeter devices

making the extraction of shared features more

straightforward.

Model WS dist. Exec. time [s]

Proton Model 8.91 8.91

Neutron Model 9.01 10.63

Proton part - Joint 6.69
9.39

Neutron part - Joint 8.76

Table 1. Wasserstein distance metric between original data

distribution and models’ predictions with execution time

Controlling simulation quality using conditional diffusion model

Figure 3. ZDC response simulation examples

Figure 4. Relations between the number of denoising steps, simulation time and simulation quality

The solution employs a conditional diffusion

model based on a modified 2D U-Net

convolutional network architecture.

Conditional diffusion model offer control on

simulation’s quality based on a value of

inference steps parameter.

Figure 4 illustrates a trend wherein the

incremental adjustment of inference steps

parameter is associated with a progressive

reduction in Wasserstein Distance.

Diffusion models present desirable properties

such as high distribution coverage and a

distinct variety in generated simulations.

Manipulating ZDC response parameters through the modified CorrVAE model

Figure 5. CorrVAE schema
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Figure 6. Examples of controlling simulation output properties

CorrVAE encodes the information of

correlated properties into the latent space w

and other information of the object into z via

the property and the object encoder,

respectively.

The correlation among properties is captured

by the mask pooling layer, where the

information to predict a specific property is

aggregated into the bridging latent variable

w0.

We reconstructed this approach using our

ZDC response data.

Results are shown in Figure 6 - we can see

that traversing w0 moves our response up

and down and traversing w3 from left to right.
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