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#TLDR Joint model for simulating multiple calorimeter devices simultaneously

= The solution employs a modified SDI-GAN
Real Neutron samples architecture which differs from the standard
iy conditional GAN by accounting for different
levels of variance of samples corresponding to
different conditional inputs.

-0 = The proposed system has two separate outputs
for the generator and two separate inputs and
outputs for the discriminator.

= CERN uses Large Hadron Collider (LHC) to study
fundamental matter properties in High Energy Physics
experiments.

= Understanding and analysing these experiments requires
running complex simulations which are computationally very
demanding.

Neutron responses

= Leveraging generative machine learning provides an efficient

alternative to existing approaches. , , o ,
= Joint model achieves competitive results relative

o to distinct models.
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= We focus on simulating the Zero Degree Calorimeter (ZDC)

in the ALICE experiment, exploring multiple approaches Neutron responses from Joint model

Joint model provides efficient inference

= Joint Generative Adversarial Networks model speeds up the significantly speeding up generation of samples.

simulation process by generating data for multiple calorimeter

devices simultaneously. The utilization of a single model for multiple

calorimeter devices optimizes the simulation
process, simplifies integration and reduces
- 10 overall complexity.

= Conditional diffusion models offer dynamic simulation quality
control.

Proton responses from Joint model

= Conditional control mechanism allows for independent

control over generated output -05  * This approach leverages inherent correlations of

data samples from two calorimeter devices
making the extraction of shared features more

Proton responses

Simulation overview 10 straightforward.
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, , , Table 1. Wasserstein distance metric between original data
Figure 2. ZDC response simulation examples distribution and models’ predictions with execution time
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Simulation input:

. Controlling simulation quality using conditional diffusion model
Particle parameters = quality using

10 inference steps 50 inference steps 100 inference steps 200 inference steps 250 inference steps

= The solution employs a conditional diffusion
model based on a modified 2D U-Net
convolutional network architecture.

o = N w S

= Conditional diffusion model offer control on
simulation’s quality based on a value of

Figure 3. ZDC response simulation examples

Simulation OUtpUt - ZDC response inference steps parameter.
= Figure 4 illustrates a trend wherein the

. ws{steps) : welHme) " Hmefsteps) incremental adjustment of inference steps

| ) parameter is associated with a progressive
o o reduction in Wasserstein Distance.
Hlo + “10 % ) = Diffusion models present desirable properties
. E T such as high distribution coverage and a

10 K\ 1024 \\ ) distinct variety in generated simulations.
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Photons deposited 1- channel Figure 4. Relations between the number of denoising steps, simulation time and simulation quality
in a fiber grid pixel image

Manipulating ZDC response parameters through the modified CorrVAE model

Zero Degree Calorimeter
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Figure 1. Fast simulation overview

Take-aways

= We reconstructed this approach using our

/DC response data.

= Results are shown in Figure 6 - we can see
that traversing w, moves our response up
and down and traversing ws from left to right.

Figure 6. Examples of controlling simulation output properties

= Machine learning generative models provide an efficient
alternative to current simulation methods used in High H}a\{ersiﬂtg |w0 "
Energy Physics experiments at CERN. o CONIOIS ¥ posIon

= Joint model reduces inference time by ~50% while providing
sample generation quality comparable to separate models

= For diffusion models the number of denoising steps used traversing w3
during inference introduces a natural mechanism to control that controls x position
simulation time and quality trade-off.

= Advanced control mechanisms allow for precise control of the
generated outcome, increasing the fidelity of the simulation.
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