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Context
● Real-world datasets are 

noisy
● Corrupted labels can 

hinder performance, 
increase size and prolong 
training times of models

● Relabeling is complex, 
costly and 
time-consuming

Objective
● To robustly learn a single 

decision tree without 
making assumptions 
about label noise

Kernel Density Decision 
Tree[1]

● Fuzzification natively 
represents uncertainty in 
the tree structure 

● Kernels smooth and 
increase margin of 
decision boundaries 

Robust Splitting Criterion[2]

● Takes into account 
unreliability of the data 
during decision tree 
induction

Feature Transformation 
Learning[3]

● Gradient-based 
optimization helps in 
obtaining small, 
performant trees 
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Noisy data

We report Expected Loss of Accuracy (ELA) with respect 
to the clean dataset. The score is averaged across 10%, 

20%, 30%, and 40% noise ratios scaled by a factor of 100 
to improve readability. The best result is bolded, second 

best is underlined. 

We compare the decision boundaries of selected 
methods trained on noisy data with 20% corrupted 

labels.

We demonstrate the models' 
relative performance to a 
standard Decision Tree 
algorithm measured by the 
Relative Weighted F1 score.
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Clean data


