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1. Abstract
Recently, machine learning has become a powerful tool for detecting quantum phases. While the information about the presence of transition is useful by itself, the lack of interpretability prevents
this tool from becoming a customary element of a physicist’s toolbox. Here, we report designing a special convolutional neural network with adaptive kernels, which allows for fully interpretable
detection of local order parameters out of spin configurations measured in arbitrary bases. With the proposed architecture, we detect relevant and simplest order parameters for the one-dimensional
transverse-field Ising model from any combination of projective measurements in the x, y, or z basis. We also present tentative preliminary results for the bilinear-biquadratic spin-1 Heisenberg
model and discuss how to extend the proposed approach to detecting topological order parameters.

2. What is an order parameter in Physics?
Order parameter:

• Definition: An order parameter is like a thermome-
ter for understanding when a system changes from
chaos to order.

• Role: It helps scientists identify different states of
matter and how they transform from disorder to or-
ganization.

Example: Ising model (Think of magnets!):
• Ising Model: Imagine a group of tiny magnets σi

that can either point up or down. (spins- 1
2 )

• Order Parameter: In this case, how many mag-
nets end up pointing in the same direction (magne-
tization) is the order parameter.

• Explanation: When we heat the magnets, they
jiggle around randomly (disorder). As we cool them
down, they start lining up in one direction (order).

• Significance: The order parameter (magnetiza-
tion) helps us see when the magnets stop being
chaotic and start behaving in an organized manner,
which is crucial for understanding many natural pro-
cesses.
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Architecture
• Subnetworks: Correlation extrac-

tion and classification.
• Each filter size: Dedicated branch

in extraction network.
• 1x1 Convolution: Enhances non-

linearity in each branch.
• Bottleneck: Combines activations

for classification.
• Phase Detection: Can be unsuper-

vised using regression. [1]

Training
• Simultaneous Training: Both net-

works are trained together.
• Constraints: L2 regularization on

weights, penalties for complex ker-
nels, and L1 regularization on acti-
vations.

• Result: The network learns to use
and highlights the simplest usable
correlator in input data.

Interpretation
• Focus: Prioritizes interpretability.
• Bottleneck activations: Linear

combination of input correlators.
• Input-bottleneck relationships:

Discovered through linear or sym-
bolic regression.

• Interpretation outcome: Ana-
lytic expression approximating the
trained neural network.

3. Automated phase detection
Why is it needed?

• In theoretical models and experiments, it can be
hard to distinguish ordered and disordered phases.

• Identifying the right order parameter is crucial but
can be challenging.

• Neural networks (NNs) can provide guidance to the-
ory in finding these parameters.

• Order parameters vary, including single-body (e.g.,
magnetization) and more complex correlators.

• Automated phase detection can aid in analyzing new
quantum systems and validating experimental data.

Order parameter detection is hard for NNs!
How does it relate to phase detection and classification?
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Features we add to state-of-the-art solutions [2], [3]:
• Automated detection of multi-site correlators.
• Identifying multiple phases accurately.
• Recognizing phases from snapshots taken in differ-

ent measurement bases.
• Our tool is both interpretable and unsupervised.

5. Network Interpretation
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The architecture is fully interpretable by
design. Correlation extraction network:

• An activation ak = ak(⟨σz
i ⟩) - a func-

tion of a correlator present in data
• When Taylor expanded to 1st (2nd) or-

der for spin- 1
2 (spin-1) system, this re-

lation is an exact linear combination.
• Its coefficients can be found with linear

regression.
Classification/regression network:

• The mapping from output to bottle-
neck activations is approximated with
symbolic regression.

From the two combined parts of this interpretation loop we get a full analytic expression approximating the trained
neural networks. All this, while achieving the main goal of finding the local order parameters and phase
transition points from the projective measurements we provide.

6. Results
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1D Transverse field Ising model
• Our architecture has successfully learned the phase tran-

sition point. Input data was obtained using DMRG [4].
• To determine this, we don’t need labels - just the

derivative of predicted parameter [1].
• We detected the correct local order parameter and dom-

inant correlators:
– z basis - ⟨σz

i ⟩ (Magnetization)
– x basis - ⟨σx

i ⟩
– y basis - ⟨σy

i σy
i+1⟩

• In our architecture, the same effect can be achieved by
inspecting derivative of the dominant kernel.

1D Bilinear-biquadratic spin-1 Heisenberg model
• More challenging problem with multiple phases. [5]
• Spin-1 system → Input spins σi ∈ {−1, 0, 1}
• Success: The dominant local order parameters our

machine detected for two phases match the theory [6].
• Disclaimer: These results are preliminary, because the

simulation data we use still needs refining.
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7. Possible extensions
1. Design of special kernels to detect string-type

order parameters
2. 2D systems: symmetric and non-symmetric

gapped convolutions; data with topological or-
der (e.g. Ising gauge theory); different lattice
geometries.

3. Combine with Siamese NNs
4. Adaptive convolution kernels [7]


