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Ensembles
▶ Ensemble models make predictions by aggregating the outputs of individual

models.
▶ An ensemble model is the application of multiple models in order to obtain

better performance.

Ensemble methods: bagging, boosting.

Ensemble methods: stacking.

Advantages? Disadvantages? Use cases?
▶ Our goal is the comparison of the two AutoML frameworks to answer questions

about model preference, popular model combinations, efficiency, accuracy, and
more.

▶ The analysis was done over a selection of 11 OpenML data sets and three
parameters passed to the frameworks. These parameters control the overall and
per run time along with ensemble sizes.

Model selection
▶ The frameworks use a slightly overlapping selection of ML models, but rarely

select create the same ensemble for a certain data set.
▶ As may be seen on the plot below Auto-sklearn is more effected by varying data

set dimensions, while AutoGluon tends to stay persistent with its model selection.
▶ Another interesting result is present on the visible heat maps which show the

most common model combinations within ensembles created by both
frameworks.
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Multiple parameters

▶ Here we may see our entire
3-dimensional parameter grid
in use on two OpenML data
sets.

▶ Every point represents one of
the possible combinations of
the three values seen in the
plot legend.
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Automated Machine Learning

Auto-sklearn
▶ Developed in 2015.
▶ Based on the scikit-learn

Python library.
▶ Uses Bayesian optimisation for

hyperparameter tuning.
▶ At its release, the framework

outperformed all other AutoML
tools.

AutoGluon
▶ Developed in 2020.
▶ Based around the idea of

Achieving state-of-the-art results
with 3 lines of Python code.

▶ Uses multi-layer stacking along
with k-fold bagging to create
optimal model ensembles.
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Auto−sklearn model cooperation
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AutoGluon model cooperation

Performance
▶ AutoML is in general a very computationally expensive task with enormous

resource consumption. This has been one of the main criticisms of this field of
research throughout its development.

▶ Below we present results of how changing the overall time budget parameter
given to each framework impacts the performance of the final model.
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Conclusion
 While many various AutoML challenges are constantly being held during which

AutoML frameworks compete in achieving high predictive accuracy, this work
provides additional insight into the results of the training and ensembling
processes of both frameworks.

 For future work, we should consider performing these experiments on a larger
selection of data sets with an increased variety of sizes and dimensions along with
a higher-dimensional parameter grid that also includes model hyperparameters.
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