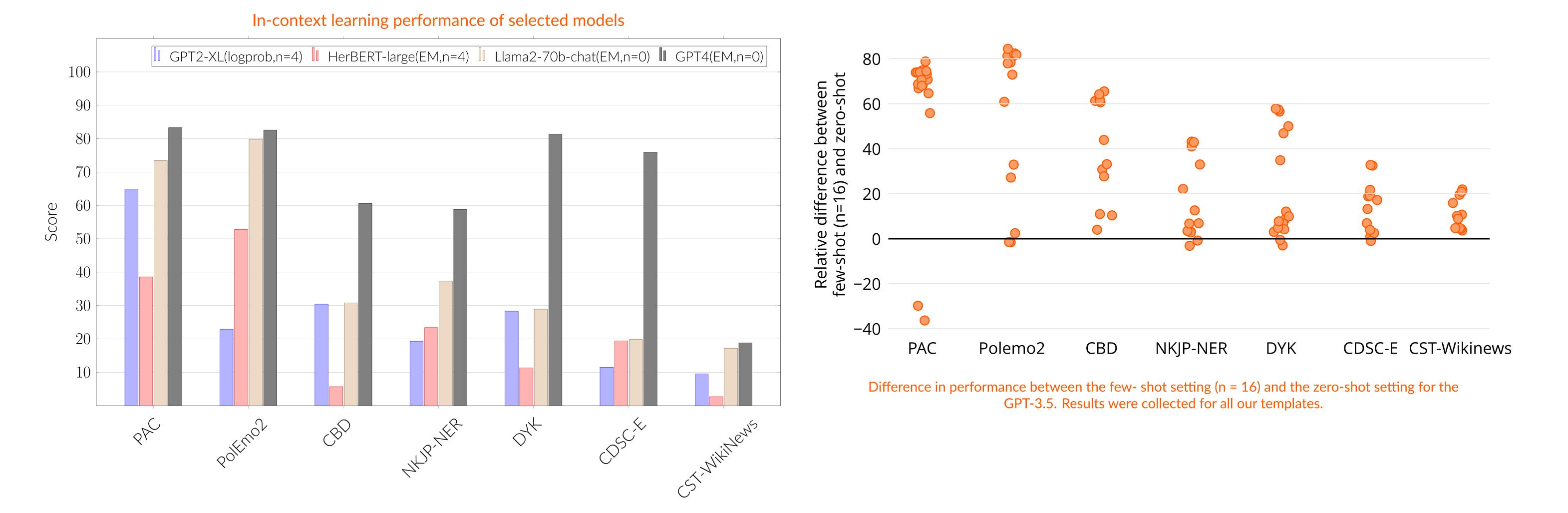
Evaluation of few-shot learning capabilities in polish language models

Tsimur Hadeliya Dariusz Kajtoch

ML Research at Allegro, Poznań, Poland

Introduction

Recent research reports that pre-trained language models can effectively solve natural language problems using only few examples. This approach called few-shot learning(FSL) and gained much popularity in recent years. However, vast majority of research in few-shot learning conducted exclusively for English, while other languages remains unexplored. To address this gap for polish language, we conducted experiments using two main approaches in FSL: In-context learning (ICL) and Parameter Efficient Fine-Tuning (PEFT). To get relevant and reliable results we stick to classification tasks during the experiments and construct few-shot classification benchmark based on publicly available datasets.


DETICITIALK										
Name	Input	#Classes	Metrics	Avg. len	Domain					
		Lepi	szcze							
PAC	text	2	F1-binary	oinary 185 legal texts						
DYK	text pair	2	F1-binary	288	Wikipedia image captions					
CDSC-E	text pair	3	Accuracy	144						
Polemo2	text	4	Accuracy	758	online reviews					
		KI	_EJ							
CBD	text	2	F1-binary	93	social media					
NKJP-NER	text	6	Accuracy	85	national corpus					
		Ot	her							
CST-Wikinews	text pair	12	Accuracy	232	Wikinews					

Benchmark

Main findings
 Few-shot approaches shows weaker performance compared to baseline models Except GPT-4, all models and methods shows much weaker performance compared to full fine-tuning and even the simplest baselines.
 PEFT outperforms ICL almost for all models ICL methods is useful with LLM, but can't guarantee stable performance/
• Polish LM from the box is not suitable to in-context learning methods The main problems are: short context window and high sensitivity for input format.

Instruction tuning of LLM transfers to Polish language

Significant difference is observed between base and chat version of Llama-2-70b models.

Model	AVG	PAC	Polemo2	CBD	NKJP-NER	DXK	CDSC-E	CST-Wikinews
Metric used		F1	Acc	F1	Acc	F1	Acc	Acc
			Baseline					
Random Guessing Most frequent /Full FT/ HerBERT-large	26.6 _{±0.4} 42.6 79.9 _{±0.6}	57.5 ± 0.7 80.6 91.1 ± 0.0	24.8 _{± 1.0} 41.3 90.9 _{± 0.0}	20.9 _{± 1.6} 23.6 53.2 _{± 3.2}	16.8 _{± 0.8} 34.3 94.0 _{± 0.0}	25.5 _{± 1.7} 28.9 68.8 _{± 2.1}	33.6 _{± 0.7} 74.4 93.4 _{± 0.0}	6.9 _{± 0.9} 15.4 67.9 _{± 1.0}
	± 0.0	± 0.0	PEFT	± 0.2	10.0	± 2.1	± 0.0	± 1.0
/SF/ SBERT-large /SF/ HerBERT-large /SF/ RoBERTa-large	47.1 44.1 <u>47.6</u>	68.8 ± 6.5 70.7 ± 11.9 66.8 ± 16.1	$69.9_{\pm 10.7} \\ 46.0_{\pm 11.2} \\ \underline{83.6}_{\pm 2.7}$	$44.4_{\pm 5.4} \\ 42.5_{\pm 10.9} \\ \underline{44.5}_{\pm 10.6}$	$30.7_{\pm 6.5}$ $25.8_{\pm 11.6}$ $35.5_{\pm 4.4}$	27.7 _{±2.9} <u>40.6</u> 26.1	$\frac{72.3}{\pm 5.7} \\ 67.2_{\pm 14.5} \\ 62.2_{\pm 10.5} \\$	$16.2_{\pm 3.2}$ $15.7_{\pm 1.9}$ $14.3_{\pm 2.5}$
/LP/ SBERT-large /FT/ SBERT-large /LP/ Ada	43.4 31.2 40.9	$67.5_{\pm 7.0} \\ 33.6_{\pm 31.3} \\ \underline{72.9}_{\pm 6.3}$	$60.3_{\pm 4.6}$ $47.0_{\pm 5.8}$ $55.2_{\pm 5.0}$	$40.1_{\pm 4.3}\\32.0_{\pm 30.7}\\30.7_{\pm 4.2}$	30.4 _{± 5.9} 28.1 _{± 7.7} 29.1 _{± 2.5}	$27.2_{\pm 1.8}$ $6.4_{\pm 10.3}$ $25.4_{\pm 4.1}$	$62.8_{\pm 5.8}\\61.0_{\pm 17.6}\\58.2_{\pm 11.7}$	$15.3_{\pm 3.0}$ $10.1_{\pm 4.3}$ $14.8_{\pm 3.9}$
/LP/ DaVinci /LP/ Gecko	42.7 37.7	67.6 _{± 7.0} 61.8 _{± 4.5}	$58.9_{\pm 1.3}_{\pm 6.4}$	$36.9_{\pm 9.7}_{\pm 1.3}$	$30.1_{\pm 6.6} \\ 24.8_{\pm 4.3}$	$29.9_{\pm 2.7}_{\pm 3.8}$	$60.1_{\pm 11.2}$	15.5 ± 3.5 17.0 ± 2.8
		1	ontext learr					
GPT-3.5 (EM) (n=0) GPT-3.5 (EM) (n=16) GPT-4 (EM) (n=0)	55.4 59.5 <u>65.9</u>	82.2 _{.014} 73.9 _{±3.6} 83.3 _{±.0}	81.6 _{.005} 81.9 _{±2.1} <u>82.6</u> ±.009	50.0 _{.046} <u>64.1</u> ± 1.9 60.6 ±.028	44.9 _{.001} 46.1 _{±2.9} <u>58.8</u> ±.004	53.1 _{.0} 64.1 _{±1.8} <u>81.3</u> ±.002	62.9 _{.0} 66.7 _{±7.6} <u>76.0</u> ±.0	13.3 _{.003} <u>19.8</u> _{± 2.7} 18.8 _{±.003}
Llama-2-70b-chat (EM) (n=0) Llama-2-70b (EM) (n=0) Bison-text (EM) (n=0)	41.0 14.6 52.2	73.4 $_{\pm .090}$ 41.8 $_{\pm .576}$ 80.2 $_{\pm .006}$	79.8 _{±.002} 11.3 _{±.678}	30.8 _{±.122} 0.3 _{±.662}	37.3 _{±.087} 21.4 _{±.324} 47.5 _{±.027}	28.9 _{±.0} 19.2 _{±.055} 61.6 _{±.016}		17.2 _{±.016} 1.6 _{±.859} 17.7 _{±.003}
Bison-text (EM) (n=16) Krakowiak-7b (EM) (n=0)	- 20.5	$\frac{\textbf{83.7}}{\textbf{38.0}}_{\pm .624}$	$81.8_{\pm 2.8}_{\pm 0.056}$	- 0.5 _{±.687}	45.7 _{± 3.6} 23.9 _{±.002}	76.6 _{± 0.7} 24.4 _{±.03}	$66.4_{\pm 7.3}_{\pm 7.002}$	$19.5_{\pm 2.2}\\9.1_{\pm .109}$
GPT-2-xI (EM) (n=0) GPT-2-xI (EM) (n=4) GPT-2-xI (EM) (n=16)	15.0 28.9 -	$\begin{array}{c c} 23.8_{\pm 33.4} \\ 65.1_{\pm 10.7} \\ 68.4_{\pm 4.9} \end{array}$	20.0 _{±27.4} 32.5 _{±11.0}	16.9 _{±29.3} 29.3 _{±10.9} 19.9 _{±8.7}	21.3 _{±9.6} 16.1 _{±3.3} 22.1 _{±6.6}	14.9 _{±33.2} 35.6 _{±28.6} 23.1 _{±22.8}	$12.1_{\pm 7.6}$	0.0 _{±0.0} 11.6 _{±7.6} 11.5 _{±6.6}
GPT-2-xl (logprob) (n=0) GPT-2-xl (logprob) (n=4) HerBERT-large (iter) (n=0) HerBERT-large (iter) (n=4)	20.2 26.7 11.2 22.0	$\begin{array}{c} 45.6_{\pm 27.0} \\ 64.9_{\pm 4.9} \\ 20.0_{44.7} \\ 38.6_{36.1} \end{array}$	22.9 _{±4.3} 40.0 _{54.8}	$3.6_{\pm 4.7}$ $30.4_{\pm 13.3}$ $0.0_{0.0}$ $5.7_{11.2}$	$\begin{array}{c} 24.9_{\pm 1.6} \\ 19.3_{\pm 10.0} \\ 5.4_{12.1} \end{array}$	29.0 _{±18.2} 28.3 _{±3.0} 0.0 _{0.0} 11.3 _{8.9}	11.5 _{±6.8} 13.2 _{12.2}	$\begin{array}{c} 6.2_{\pm 5.3} \\ 9.5_{\pm 3.9} \\ 0.0_{0.0} \\ 2.7_{1.1} \end{array}$

Methodology

We F1-binary and Accuracy metrics to follow approach used in KLEJ benchmark and have comparable results with models tested on this datasets.

To obtain reliable results, we conduct 5 experiments with different seeds and calculate mean with standard deviation (reported underline).

Baseline

- Random guessing Sample label from training data distribution.
- Most frequent Use the most frequent label from train dataset as constant prediction. This method shows inbalance in datasets.

PEFT

- /SF/ fine-tuning with SetFit method.
- /LP/ Linear probing. Logistic regression on top of LM representations.
- /FT/ Head-based Fine-tuning.
- /Full FT/ Fine-tuning on all training data.

In-context learning

eval method:

- EM Exact match. Check label in generated substring. If no label is matched, output special label and calculate as wrong prediction.
- logprob Calculate log probability of sequence with given label. Choose sequence with highest probability. Always choose one of the proposed labels.
- iter Iteratively add "[MASK]" token to generate label sequence. When

Performance on test data <u>Underline numbers</u> - best across method(PEFT or ICL); **Bold numbers** - best across two methods (PEFT and ICL)

- generated EM approach is used.
- (n=k) number of demonstrations (k) used in prompt.

References

- [1] Augustyniak et al., 2022, this is the way: designing and compiling lepiszcze, a comprehensive nlp benchmark for polish.
- [2] Bach et al., 2022, PromptSource: An integrated development environment and repository for natural language prompts.
- [3] Radford et al., 2019, language models are unsupervised multitask learners.
- [4] Rybak et al., 2020, KLEJ: Comprehensive benchmark for Polish language understanding.
- [5] Touvron et al., 2023, llama 2: Open foundation and fine-tuned chat models.

https://conference2023.mlinpl.org

ML in PL 2023, Warsaw