TOWARDS MORE REALISTIC MEMBERSHIP INFERENCE ATTACKS ON LARGE DIFFUSION MODELS

Jan Dubiński¹, Antoni Kowalczuk^{1,2}, Stanisław Pawlak¹, Przemysław Rokita¹, Tomasz Trzciński^{1,3,4}, Paweł Morawiecki⁵

¹Warsaw University of Technology, ²AI Society Golem, ³IDEAS NCBR, ⁴Tooploox, ⁵Polish Academy of Sciences

• We identify the **pitfalls** of existing approaches to *membership inference attacks* on large diffusion models.

- We provide a new **dataset** along with construction methodology.
- We propose a **fair** and **rigorous** evaluation protocol on the **SOTA Stable Diffusion model**.

SOLUTION: LAION-MI DATASET

We assess the mismatch using the following metrics:Visual inspection of the PCA projection of the dataset.

• FID score between the subsets.

• Classifier-based evaluation.

NCBR O O

• We thoroughly evaluate a set of *MIAs* using our dataset and methodology.

MEMBERSHIP INFERENCE ATTACKS

Was this example used to train the model? Yes or No?

A general scheme of constructing LAION-mi dataset.

CHALLENGES

• Duplicates: LAION-2B EN constains 30% duplicates[2].

 Distribution mismatch: LAION-2B EN and LAION-2B Multi Translated may have different distributions.

SANITIZATION: PCA PROJECTION

SANITIZATION: FID

	FID	
Data subset	text	images
Members internal - random	9.84	7.00
Members internal - sanitized	9.77	7.06
Nonmembers internal	9.73	7.01

Loss Threshold Attack: IF loss(sample) < threshold THEN member ELSE nonmember.

PROBLEM: LACK OF NONMEMBERS
SET

We cannot run MIA evaluation without nonmembers. A few approaches has been proposed:

- 1. Fine-tune Stable Diffusion on a new dataset[1]. **Pitfall**: too trivial problem due to overfitting.
- 2. Train a new model on a new dataset. **Problem**: too expensive.
- 3. Create a dataset with similar properties to the original one. **Challenge**: distribution mismatch.

PITFALL: FINE-TUNING

ROC curve

DEDUPLICATION

Comparative - random66.4313.90Comparative - sanitized13.548.87

LAION-MI SAMPLES

Sample 16 nonmembers

			TPR@FPR=1%. ↑	
Scenario	Loss	Method	LAION-mi	POKEMON
White-box	Model Loss	Baseline loss thr.	1.92%±0.59	80.9%±2.27
		Reversed noising Partial denoising	2.51%±0.73 2.31%±0.61	97.3%±0.93 94.5%±1.34
		Reversed denoising	2.25%±0.64	91.5%±1.63
	Latent Error	Reversed noising Partial denoising	1.26%±0.62 2.42%±0.62	11.5%±1.84 99.5%±0.4
		Reversed denoising	2.17%±0.64	61.1%±2.74
	Pixel Error	Reversed noising Reversed denoising Partial denoising	1.90%±0.51 2.03%±0.55 1.75%±0.68	8.36%±1.66 12.0%±1.97 25.38%±2.55
Grey-box	Latent Error	Generation from prompt	0.93%±0.41	7.15%±1.5

EVALUATION

Pitfalls in the evaluation setting can lead to incorrect conclusions on the effectiveness of *membership inference attacks* against large diffusion models such as Stable Diffusion. Black-box Pixel Error Generation from prompt 0.35%±0.19 12.0%±1.9

References

[1] Jinhao Duan et al. Are Diffusion Models Vulnerable to Membership Inference Attacks? 2023. arXiv: 2302.01316 [cs.CV].
[2] Ryan Webster et al. On the De-duplication of LAION-2B. 2023. arXiv: 2303.12733 [cs.CV].