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TL;DR

• We identify the pitfalls of existing approaches to
membership inference attacks on large diffusion mod-
els.

• We provide a new dataset along with construction
methodology.

• We propose a fair and rigorous evaluation protocol
on the SOTA Stable Diffusion model.

• We thoroughly evaluate a set of MIAs using our
dataset and methodology.

MEMBERSHIP INFERENCE ATTACKS

Was this example used to train the model? Yes or No?
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Loss Threshold Attack: IF loss(sample) <
threshold THEN member ELSE nonmember.

PROBLEM: LACK OF NONMEMBERS

SET

We cannot run MIA evaluation without nonmembers. A
few approaches has been proposed:

1. Fine-tune Stable Diffusion on a new dataset[1]. Pit-
fall: too trivial problem due to overfitting.

2. Train a new model on a new dataset. Problem: too
expensive.

3. Create a dataset with similar properties to the original
one. Challenge: distribution mismatch.

PITFALL: FINE-TUNING
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POKEMON: Baseline loss threshold
POKEMON: Partial denoising
POKEMON: Reversed noising
LAION-mi: Baseline loss threshold
LAION-mi: Partial denoising
LAION-mi: Reversed noising

Pitfalls in the evaluation setting can lead to incorrect conclusions on the effec-
tiveness of membership inference attacks against large diffusion models such
as Stable Diffusion.

SOLUTION: LAION-MI DATASET

LAION Aesthetics v2.5+
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A general scheme of constructing LAION-mi dataset.

CHALLENGES

• Duplicates: LAION-2B EN constains 30% dupli-
cates[2].

• Distribution mismatch: LAION-2B EN and LAION-
2B Multi Translated may have different distribu-
tions.

DEDUPLICATION
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Distribution of L2 distances.
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Duplicates count per 100 samples for
L2 distances buckets.

EVALUATION

TPR@FPR=1%. ↑
Scenario Loss Method LAION-mi POKEMON

White-box

Model Loss

Baseline loss thr. 1.92%±0.59 80.9%±2.27

Reversed noising 2.51%±0.73 97.3%±0.93
Partial denoising 2.31%±0.61 94.5%±1.34

Reversed denoising 2.25%±0.64 91.5%±1.63

Latent Error
Reversed noising 1.26%±0.62 11.5%±1.84
Partial denoising 2.42%±0.62 99.5%±0.4

Reversed denoising 2.17%±0.64 61.1%±2.74

Pixel Error
Reversed noising 1.90%±0.51 8.36%±1.66

Reversed denoising 2.03%±0.55 12.0%±1.97
Partial denoising 1.75%±0.68 25.38%±2.55

Grey-box Latent Error Generation from prompt 0.93%±0.41 7.15%±1.5

Black-box Pixel Error Generation from prompt 0.35%±0.19 12.0%±1.9
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DISTRIBUTION MISMATCH

We assess the mismatch using the following metrics:

• Visual inspection of the PCA projection of the
dataset.

• FID score between the subsets.

• Classifier-based evaluation.

SANITIZATION: PCA PROJECTION

Prompts before sanitization. Prompts after sanitization.

SANITIZATION: FID

FID
Data subset text images

Members internal - random 9.84 7.00
Members internal - sanitized 9.77 7.06
Nonmembers internal 9.73 7.01

Comparative - random 66.43 13.90
Comparative - sanitized 13.54 8.87

LAION-MI SAMPLES

Sample 16 members. Sample 16 nonmembers.
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