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TL;DR

 We identify the pitfalls of existing approaches to
membership inference attacks on large diffusion mod-
els.

* We provide a new dataset along with construction
methodology.

* We propose a fair and rigorous evaluation protocol
on the SOTA Stable Diffusion model.

 We thoroughly evaluate a set of MIAs using our
dataset and methodology.

MEMBERSHIP INFERENCE ATTACKS

Was this example used to train the model? Yes or No?
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Loss Threshold Attack: I[F loss(sample) <
threshold T'HEN member ELSFE nonmember.

PROBLEM: LACK OF NONMEMBERS
SET

We cannot run MIA evaluation without nonmembers. A
few approaches has been proposed:

1. Fine-tune Stable Diffusion on a new dataset[1]. Pit-
fall: too trivial problem due to overfitting.

2. Train a new model on a new dataset. Problem: too
expensive.

3. Create a dataset with similar properties to the original
one. Challenge: distribution mismatch.
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Pitfalls in the evaluation setting can lead to incorrect conclusions on the effec-
tiveness of membership inference attacks against large diffusion models such
as Stable Diffusion.

SOLUTION: LAION-MI DATASET
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A general scheme of constructing LAION-mi dataset.

CHALLENGES

* Duplicates: LAION-2B EN constains 30% dupli-
cates|2].

e Distribution mismatch: LAION-2B EN and LAION-
2B Multi Translated may have different distribu-
tions.

DEDUPLICATION
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DISTRIBUTION MISMATCH

We assess the mismatch using the following metrics:

* Visual inspection of the PCA projection of the
dataset.

* FID score between the subsets.
* Classifier-based evaluation.

SANITIZATION: PCA PROJECTION
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Prompts before sanitization. Prompts after sanitization.

SANITIZATION: FID

FID

Data subset text images

Members internal - random 9.84 7.00
Members internal - sanitized 9.77 7.06

Nonmembers internal 9.73 7.01
Comparative - random 66.43 13.90
Comparative - sanitized 13.54 8.87

LAION-MI SAMPLES

(XE.PERCE NI

- oe

\ T T ——
- _ i e 2y ",:":-A o

atch live, Oct. 16: N\l = anl@ = (" F
Conversation witt § &8 N . ‘

EVALUATION L = _g = . W
Sample 16 members. Sample 16 nonmembers.
TPR@FPR=1%.
Scenario Loss Method LAION-mi POKEMON
Baseline loss thr. 1.92%+0.59 80.9%+2.27
Model Loss Reversed noising 2.91%=0.73 97.3%=0.93
Partial denoising 2.31%+0.61 94.5%+1.34
Reversed denoising 2.25%=+0.64 91.5%41.63
White-box Reversed noising  1.26%+0.62 11.5%+1.84
Latent Error Partial denoising 2.42%+0.62 99.5%+0.4
Reversed denoising 2.17%+0.64 61.1%42.74
Reversed noising 1.90%+0.51 8.36%+1.66
Pixel Error  Reversed denoising 2.03%40.55 12.0%41.97
Partial denoising 1.75%=+0.68 25.38%12.55
Grey-box Latent Error Generation from prompt 0.93%=40.41 7.15%41.5
Black-box Pixel Error Generation from prompt 0.35%=+0.19 12.0%41.9
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