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Introduction

Currentmachine learning models perform very

well only when the test-time distribution is

close to the training-time distribution.

Continual Test-TimeAdaptation (TTA)methods

allow the sourcemodel to adapt itself on-the-fly

to continual changes in data distribution with-

out any supervision.

Current techniques are usually evaluated on

benchmarks that are only a simplification of

real-world scenarios.

We observe that current test-time adaptation

methods struggle to effectively handle varying

degrees of domain shift, often resulting in de-

graded performance that falls below that of the

source model.
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Figure 1. Continual test-time adaptation methods evaluated

on synthetic (CIFAR-10C) and realistic (CLAD-C) domain

shifts. Ourmethod is the only one that consistently allows to

improve over the naive strategy of using the (frozen) source

model.

Contribution

Our main contributions can be summarized as follows:

We evaluate and analyze current test-time adaptation methods on realistic, continual domain shift

image classification data from autonomous driving.

We propose a simple continual TTA method.

Extensive evaluation shows that the proposed method obtains state-of-the-art performance on mul-

tiple benchmarks with both artificial distortions and real-life domain shifts.

Natural domain shifts

Figure 2. Example images from various domains within the

CLAD-C benchmark.

Figure 3. Example images with different corruptions from

the ImageNet-C dataset.

The most popular setting for test-time adaptation includes using different classes of synthetic corrup-

tions.

In practical applications, the target distribution can easily change in different manner, perpetually over

time, e.g., due to changing weather, lighting conditions, or traffic intensity.

Hence, we propose to use two benchmarks that consist of data with domain shifts that can occur in

real-world applications - the CLAD-C benchmark [5] and the SHIFT dataset [4].

Proposed method (AR-TTA)
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Our proposed approach to AR-TTA can be divided into three parts:

Update procedure: Inspired by [7], we keep two identical neural network models with different
sets of weights: the teacher model and the student model. The student model is updated based on

cross-entropy loss between its predictions and pseudo-labels generated by the teacher model. The

teacher model is adapted based on an exponential moving average of student’s weights. Predictions

for each image are taken from the teacher model.

Experience replay: We store a small class-balanced buffer of random exemplars from the labeled

source data in the memory. We sample one exemplar from memory for each test image and mixup

image pairs. Similarly, pseudo-labels from the teacher model are mixupped with the labels of sampled

exemplars. The student model is trained on augmented test samples and augmented pseudo-labels.

Dynamic BarchNormalization Statistics: To robustly estimate the correct BatchNormalization

(BN) statisticswe take the inspiration from [1] and propose to estimate BN statistics during test-time by

linearly interpolating between saved statistics of source data and statistics of the current batch. The

parameter that weights the influence of two sets of statistics is adjusted by the exponential moving

average. Its value at the current batch is calculated using the distance between the distribution of

the current batch and the distribution used for the previous batch. As a distance metric, we utilize

symmetric KL divergence.

Results on artificial domain shifts

Table 1. Classification accuracy (%) for the standard

ImageNet-to-ImageNetC and CIFAR10-to-CIFAR10C on-

line continual test-time adaptation tasks.

Method
Mean

CIFAR10C ImageNetC

Source 56.5 18.1

BN stats adapt 75.0 26.9

TENT-continual [6] 76.7 29.2

EATA [2] 78.2 31.5

COTTA [7] 75.7 15.5

SAR [3] 75.2 30.8

Ours (AR-TTA) w/o replay 77.3±0.07 30.0±0.45
Ours (AR-TTA) 78.8±0.13 32.0±0.07

Artificial domain shifts pose a great challenge

for source model.

Discarding BN statistics calculated on the

source training data and estimating them for

each batch separately, already significantly im-

proves the result on corrupted images (BN stats

adapt method).

Each of the compared state-of-the-art TTA

methods uses the BN stats adapt technique,

therefore they are able to improve over it, but

the increase in accuracy value is not that signif-

icant.

Our method AR-TTA outperforms all of the

compared techniques.

Results on natural domain shifts

Table 2. Classification accuracy and average mean class accuracy (AMCA) (%) for the CLAD-C continual test-time adaptation

task.

t −−−−−−→
Method T1 T2 T3 T4 T5 Mean day Mean night Mean AMCA

Source 75.6 85.9 73.3 87.5 66.2 86.6 71.2 81.3 57.6

BN stats adapt 73.2 69.9 75.0 75.5 59.7 72.2 69.1 71.1 48.3

TENT-continual [6] 73.4 69.8 76.5 76.1 59.7 72.4 69.8 71.5 47.6

EATA [2] 73.3 69.9 75.0 75.6 59.7 72.2 69.1 71.1 48.4

CoTTA [7] 75.2 69.3 80.2 77.0 62.7 72.4 72.9 72.6 44.8

SAR [3] 73.2 69.9 75.0 75.5 59.7 72.2 69.1 71.1 48.3

Ours (AR-TTA) w/o replay 76.9 86.7 81.4 87.9 73.5 87.2 77.1 83.9±0.30 59.6±2.92
Ours (AR-TTA) 77.2 86.7 80.0 89.6 70.7 87.8 75.7 83.7±0.64 63.1±3.32

Table 3. Classification accuracy and average mean class accuracy (AMCA) (%) for the SHIFT-C continual test-time adaptation

task.
t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method

daytime dawn/dusk night

Mean AMCA
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Source 97.9 98.2 97.5 92.5 93.6 94.1 94.0 93.5 91.5 89.1 89.3 90.6 89.1 90.7 93.5 89.5

BN stats adapt 89.1 88.9 88.0 86.2 85.3 84.8 87.3 83.5 84.8 81.3 81.2 80.3 79.6 83.5 85.1 69.9

TENT-continual [6] 89.6 88.8 87.5 84.6 83.3 81.2 85.0 80.7 80.2 78.0 77.0 76.1 75.7 77.6 82.7 57.6

EATA [2] 89.1 88.9 88.0 86.2 85.3 84.8 87.4 83.6 84.9 81.4 81.4 80.3 79.7 83.7 85.1 70.5

CoTTA [7] 88.2 87.1 84.1 80.5 78.7 76.2 80.5 74.0 74.9 71.5 70.3 67.3 64.9 66.2 77.4 47.2

SAR [3] 89.1 88.9 88.0 86.2 85.3 84.8 87.3 83.5 84.8 81.3 81.2 80.3 79.6 83.6 85.1 69.9

Ours (AR-TTA) w/o replay 96.4 96.5 95.3 93.2 92.2 91.9 93.2 91.4 91.8 88.7 88.7 88.6 87.5 91.2 92.4±0.25 83.5±0.96
Ours (AR-TTA) 97.7 98.0 97.4 94.3 94.2 95.5 94.8 95.2 93.1 92.3 92.7 93.0 91.4 92.6 94.8±0.03 90.2±0.24

Calculating BN statistics for each batch (BN stats adapt method) does not improve the performance

over the frozen source model on natural domain shifts.

Similarly, the state-of-the-art TTA methods achieve significantly lower mean accuracy, compared to

the frozen source model, rendering them not effective for natural domain shifts.

Our method, which uses pre-calculated statistics and exemplars of source data during adaptation, out-

performed state-of-the-art methods and achieves higher accuracy than the source model, which shows

the effectiveness and adapting capabilities.

Average mean class accuracy (AMCA) values show that the usage of replay memory might be crucial

for high mean per-class accuracy.
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Figure 4. Batch-wise classification accuracy averaged in a window of 100 batches on CLAD-C benchmark for the chosen

methods continually adapted to the sequences of data. The ticks on x-axis symbolize the beginning of next sequence and at

the same time a different domain. Window for calculating average values is cleared in between sequences.

Conclusions

State-of-the-art methods are inadequate in real-life settings, as they fall short in achieving accuracy

comparable to the frozen source model.

We propose a novel and straightforward method called AR-TTA. It achieves state-of-the-art

performance on various benchmarks, consistently outperforming the source model, which serves as

the ultimate baseline for feasible TTA methods.

Our more realistic evaluation of TTA with a variety of different datasets provides a better

understanding of their potential benefits and shortcomings.
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