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Introduction Results on natural domain shifts
= Current machine learning models perform very 0 @ CIFAR10C Table 2. Classification accuracy and average mean class accuracy (AMCA) (%) for the CLAD-C continual test-time adaptation
well only when the test-time distribution is . S CLADC task.
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benchmarks that are only a simplification of Ours (AR-TTA) 77.2 86.7 80.0 89.6 70.7 87.8 757 183.740.61 63.143 5

real-world scenarios.

" We observe that current test-time adaptation Table 3. Classification accuracy and average mean class accuracy (AMCA) (%) for the SHIFT-C continual test-time adaptation

methods struggle to effectively handle varying Figure 1. anﬁnual test-time adaptatj'oh methods evaluatgd ek
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Our main contributions can be summarized as follows: EATA [2] 89.1 88.9 88.0 86.2/85.3 84.8 87.4 83.6 84.9/81.4 814 80.3 79.7 83.7| 85.1 70.5
CoTTA [7] 88.2 87.1 84.1 80.5 78.7 76.2 80.5 74.0 74.9 71.5 70.3 67.3 64.9 662 774 47.2
= We evaluate and analyze current test-time adaptation methods on realistic, continual domain shift SAR (3] 6.1 88.9 88.0 86.2/85.3 84.8 8/.3 83.0 84.6/81.5 812 80.3 /9.6 83.6, 851 = 69.9
: lassification data from autonomous drivin Ours (AR-TTA) w/o replay | 96.4 96.5 95.3 93.2/92.2 91.9 932 91.4 91.8/88.7 88.7 88.6 87.5 91.2/92.4. 95 83.510.06
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= We propose a simple continual TTA method.
= Extensive evaluation shows that the proposed method obtains state-of-the-art performance on mul- = Calculating BN statistics for each batch (BN stats adapt method) does not improve the performance
tiple benchmarks with both artificial distortions and real-life domain shifts. over the frozen source model on natural domain shifts.

= Similarly, the state-of-the-art TTA methods achieve significantly lower mean accuracy, compared to

Natural domain shifts the frozen source model, rendering them not effective for natural domain shifts.

= Our method, which uses pre-calculated statistics and exemplars of source data during adaptation, out-
performed state-of-the-art methods and achieves higher accuracy than the source model, which shows
the effectiveness and adapting capabilities.

= Average mean class accuracy (AMCA) values show that the usage of replay memory might be crucial
for high mean per-class accuracy.

Average

Figure 2. Example images from various domains within the Figure 3. Example images with different corruptions from
CLAD-C benchmark. the ImageNet-C dataset. 100
= The most popular setting for test-time adaptation includes using different classes of synthetic corrup-
tions. 20
= |n practical applications, the target distribution can easily change in different manner, perpetually over 0
time, e.g., due to changing weather, lighting conditions, or traffic intensity.
= Hence, we propose to use two benchmarks that consist of data with domain shifts that can occur in S 20
real-world applications - the CLAD-C benchmark [5] and the SHIFT dataset [4]. >
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Figure 4. Batch-wise classification accuracy averaged in a window of 100 batches on CLAD-C benchmark for the chosen
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Conclusions

Our proposed approach to AR-TTA can be divided into three parts:

| | | . | = State-of-the-art methods are inadequate in real-life settings, as they fall short in achieving accuracy
- Update procedure: Inspired by [7], we keep two identical neural network models with different comparable to the frozen source model.

sets of weights: the teacher model and the student model. The student model is updated based on
cross-entropy loss between its predictions and pseudo-labels generated by the teacher model. The
teacher model is adapted based on an exponential moving average of student’s weights. Predictions
for each image are taken from the teacher model.

= Experience replay: We store a small class-balanced buffer of random exemplars from the labeled
source data in the memory. We sample one exemplar from memory for each test image and mixup
image pairs. Similarly, pseudo-labels from the teacher model are mixupped with the labels of sampled References
exemplars. The student model is trained on augmented test samples and augmented pseudo-labels.

- Dynamic Barch Normalization Statistics: To robustly estimate the correct Batch Normalization
(BN) statistics we take the inspiration from [1] and propose to estimate BN statistics during test-time by
linearly interpolating between saved statistics of source data and statistics of the current batch. The

= We propose a novel and straightforward method called AR-TTA. It achieves state-of-the-art
performance on various benchmarks, consistently outperforming the source model, which serves as
the ultimate baseline for feasible TTA methods.

= Our more realistic evaluation of TTA with a variety of different datasets provides a better
understanding of their potential benefits and shortcomings.
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