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Positive-Unlabeled Data
Classification

Positive-Unlabeled data classification is a special
type of binary classification task, where the model
has a limited access to the observations’ labels:
most of them are unknown, except for a part of posi-
tively marked ones. The problem naturally emerges
in a vast number of applications, such as:
• disease diagnosis – besides patients who are di-
agnosed with a disease, there are those who are
not diagnosed at all (and thus are either healthy
or ill),

• surveys with answers possibly stigmatized by the
society – when the people are likely to respond
with a false negative. [1]

Fig. 1: PU data illustration

We consider case-control scenario for PU data,
corresponding to the first example. Available sam-
ples: sample U (Unlabeled) pertaining to a gen-
eral population governed by density f and sample
L (Labeled) from positive class with density fP .

The Variational Approach

Class prior π is a valuable information in PU learn-
ing methods design. However, its acquisition is diffi-
cult and based only on PU case-control data - infea-
sible. Thus, methods operating with no class prior
provided are of a great importance. One of them,
VPU [2], involves neural networks with a novel loss
function to solve the problem:

L(Φ) = logEf [Φ(x)]− EfP [logΦ(x)]+

+ λ
(
EΦ̃,x̃

[(
logΦ̃− logΦ(x̃)

)2
])

where:
• x̃ are artificial examples, prepared as convex
combinations of random positive and unlabeled
examples

• Φ̃ is an analogous combination of model’s ex-
pected output (i.e. 1 for positive and Φ(x) for un-
labeled input)

The loss is a weighted sum of variational and MixUp
regularization components. The ideal Bayesian
classifier related to P (Y = 1 | x) is approximated
with a parametric model Φ∗, s.t. Φ∗ = minΦL(Φ).

Method Analysis

The variational part of the proposed loss function
is related to the Donsker-Varadhan representation
of the Kullback-Leibler divergence, known from
information theory:

KL(P ||Q) = sup
T∈F

(EP [log T ]− log(EQ[T ]))

In VPU maximizers are proportional to posterior
probability P (Y = 1 | x) and penalization terms are
introduced to constrain them to be equal to it.

Modifications

Kullback-Leibler divergence can be bounded with
use of different variational representations. Along
with the original VPU, we adapt other representa-
tions to address PU learning problem and denote:
•RI [3]

KL(P ||Q) = sup
T∈F

(EP [log T ]− log(EQ[T ]))

•RII [4]

KL(P ||Q) = sup
T∈F

(EP [log T ]− EQ[T/e])

•RIII

KL(P ||Q) = sup
T∈F

(EP [log T ]− EQ[T ] + 1)

The above formulas are applied to P corresponding
to fP and Q corresponding to f .
RI is the only method which yields posterior prob-
ability estimator without knowledge of π. Given
a T ∈ F , it obtains greater values than others.
Nonetheless, the effectiveness of optimization by
deep learning models is the subject of experiments.
Moreover, for the original version of variational loss,
we also propose and employ other regularization
terms to the RI representation:
• MixUp – original, with use of augmented synthetic
examples:

LMixUp(Φ) = EΦ̃,x̃

[(
logΦ̃− logΦ(x̃)

)2
]

• π-based – tightening the average prediction over
unlabeled prediction to π:

Lπ(Φ) =
(
log Φ̄(xu)− log π

)2

• Mixed – a combination of two previous functions:

LMixed(Φ) = LMixUp(Φ) + λ1Lπ(Φ)

Finally, KL divergence determination can also be
represented as a dual problem:

KL(P ||Q) = sup
T∈F

EP [s]

w.r.t.EQ [es] = 1

Thus, we propose a new loss function with compo-
nents responsible for seeking the supremum and
penalizing deviations from the constraint.

Experiments

The proposed modifications were evaluated with
comprehensive experiments, following these prin-
ciples:
• the models’ architectures were consistent with
the ones proposed by VPU authors;

• we used 6 datasets (3 tabular and 3 image) and
measured accuracy on the test set;

• every experiment was performed with a set of
hyperparameters optimized with Optuna;

• final result is the average accuracy over at least
10 runs, reported with standard error;

• the methods are compared with 3 baselines,
considered as state-of-the-art in case-control PU
learning area: unbiased PU (uPU), non-negative
PU (nnPU) [5] and the original VPU;

• the starting ratio of labeled positive examples was
c = 0.4. As an ablation study we carried out
experiments with different values of c.

Results

Fig. 2 presents average accuracy of each method
on all datasets. In general, RI with mixed regular-
ization and RIII consistently obtain relatively high
values, in most cases higher than the baselines.
On contrary, RI with π-based regularization and
dual-problem-based method perform poorly with
unstable results.

Fig. 2: Results for various datasets with positive-labeled ratio: 0.4

Fig. 3 presents the results of ablation study - multi-
ple experiments were run on Avila dataset. As ex-
pected, the higher is the level of labeled positive
observations, the more accurate are the methods.
Again, RIII appears to perform the best as it ob-
tains the greatest accuracy for 6 out of 9 c levels.

Fig. 3: Ablation study: Results on Avila dataset vs. positive-labeled ratio

Conclusions

In this work we exhaustively analyzed and further
developed VPU method for PU learning method.
Part of the proposed modifications are proved to be
successful by broad experiments on various data.
Though not consistently, RI (Mixed), RII and RIII

usually obtain higher accuracy than other methods
and can be considered in real applications.
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