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Introduction ©

COVID-19 exposed the truth, that the world was woefully unprepared for global
pandemic. This catastrophy made us realize, that with the limited medical resources
we have, we need to put more focus on early forecasting and strategic planning to
provide our support in the most efficient manner.
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This is were Artificial Intelligence can play a key role - by properly adapting the task
of key node identification in complex networks we can reliably forecast the scale of
the pandemic processes.

Framework 2

We present an enhanced machine learning-based framework for identifying key
nodes in complex networks designed to address the shortcomings of its
predecessors.
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1. Obtaining the labels

a) Simulating the spread with Susceptible, Infected and Recovered (SIR) model*

A complex network diffusion algorithm, commonly used to obtain ground truth
for node spreading capabilities.

b) Discretizing the results using Smart Binning — an unsupervised approach for
node labelling

Results of the diffusion model simulation require further postprocessing
before feeding them into an ML model, as their fine granularity would cause

multiple problems.

2. Generating node embedding

We compose the embedding vector using centrality measures, with an addition
of infection rate parameter (the contagiousness). This allows our model to
universally operate across different types of viral spreads.
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3. Training machine Iearning models
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*Calculations were performed using resources provided by the Wroctaw Network and Supercomputing Center (http://wcss.pl/)

Smart bins <

Other papers [1, 2] address the granurality problem fairly poorly - authors train their
models to predict an arbitrary top percent of the nodes (e.g 5%). This approach has

major flaws, such as: Facebook
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(Effect of smart binning vs. fixed binning. Red line denotes top 5% of the nodes)

We propose a new approach — Smart bins. By utilizing unsupervised machine
learning algorithms, we can achieve a flexible discretization based on actual
dependencies in the data, not just an arbitrary choice of a parameter.

Performance 1~

Our model, as the first of this kind, is able to predict
3 crucial characteristics of the spreading process:
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Impact of smart bining

Infection range Infection peak Peak time
Fixed bins Fixed bins Fixed bins
Facebook 0.87 = 0.08 0.97 £ 0.001 | 0.89 = 0.03 0.96 &= 0.01 | 0.90 = 0.01 0.96 = 0.01
Twitch DE | 0.62 + 0.12 0.97 £ 0.003 | 0.85 £ 0.05 0.96 = 0.01 | 0.86 & 0.02 0.96 + 0.01
Twitch ES | 0.70 + 0.13 0.96 +£ 0.01 | 0.81 £ 0.07 0.96 4+ 0.01 | 0.84 + 0.04 0.96 + 0.01
Twitch FR | 0.60 &= 0.09 0.96 £ 0.002 | 0.80 £ 0.06 0.97 &= 0.01 | 0.85 &= 0.02 0.95 £ 0.01
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Summary &4

Our major contributions to the field include:

- Novel node labelling approach based on unsupervised machine learning —
Smart Bins

- Improved model with the ability to predict 3 crucial characteristics of the
spreading process

Our approach allowed to us to achieve state-of-the-art performance, surpassing the
competition (in both performance and stability) by a significant margin.
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