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url = ("https://export.arxiv.org/api/query" +
"?search_query=au:%22Adam%20Polak%22&max_results=50")

feed = feedparser.parse(urllib.request.urlopen(url).read())
data = [(entry.title, entry.summary) for entry in feed.entries]

embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")

embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)

for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])



url = ("https://export.arxiv.org/api/query" +
"?search_query=au:%22Adam%20Polak%22&max_results=50")

feed = feedparser.parse(urllib.request.urlopen(url).read())
data = [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")

embeddings = embed([abstract for _, abstract in data]).numpy()

clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)

for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])



url = ("https://export.arxiv.org/api/query" +
"?search_query=au:%22Adam%20Polak%22&max_results=50")

feed = feedparser.parse(urllib.request.urlopen(url).read())
data = [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")

embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)

pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)

for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])



url = ("https://export.arxiv.org/api/query" +
"?search_query=au:%22Adam%20Polak%22&max_results=50")

feed = feedparser.parse(urllib.request.urlopen(url).read())
data = [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")

embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)

for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)

for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])



url = ("https://export.arxiv.org/api/query" +
"?search_query=au:%22Adam%20Polak%22&max_results=50")

feed = feedparser.parse(urllib.request.urlopen(url).read())
data = [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")

embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)

for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])



Fine-grained complexity

Algorithms with predictions

Counting Triangles in Large Graphs on GPU

Why is it hard to beat O(n2) for (...)

Learning-Augmented Maximum Flow

Bellman–Ford is optimal for shortest hop-bounded paths

On an extremal problem for poset dimension

Tight Conditional Lower Bounds for (...)

Monochromatic Triangles, Intermediate (...)

Euler Meets GPU: Practical Graph (...)

Knapsack and Subset Sum with Small Items Robust Learning-Augmented Caching (...)

Nearly-Tight and Oblivious Algorithms (...)

Tight Vector Bin Packing with Few (...)

On Minimizing Tardy Processing Time (...)

Online Coloring of Short Intervals

Equivalences between triangle and range (...)

Memoryless Worker-Task Assignment with (...)

Faster Monotone Min-Plus Product, Range (...)

Learning-Augmented Dynamic Power (...)

Online metric algorithms with untrusted (...)

Mixing predictions for online metric algorithms

On Dynamic Graph Algorithms with Predictions
Paging with Succinct Predictions
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Clustering can be hard to explain
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Explainable clustering

x1 ≤ 0.4

x2 ≤ 0.6

A threshold tree is a binary tree-

where each non-leaf node is an axis-aligned threshold cut.

An explainable k-clustering is one formed by a threshold tree with k leaves.
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How much more expensive is an optimal explainable clustering?

Can we find a good explainable clustering efficiently?

First introduced and studied by Moshkovitz, Dasgupta, Rashtchian, Frost (ICML 2020)
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Let’s focus on k-median

Input: points X in Rd

Distance: L1-norm
i.e. dist(x, y) =

∑d
i=1 |xi − yi|

Goal: find k centers C minimizing∑
x∈X minc∈C dist(x, y)

OPT = a+ b+ c+ d+ e+ f
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While there is a leaf with more than one center, select a min-cut

= a cut that separates the fewest number of points from their closest centers
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Moshkovitz–Dasgupta–Rashtchian–Frost analysis

#points separated by min-cut · distance to furthest center ⩽ OPT

OPT(left) + OPT(right) ⩽ OPT

cost increase at each level ⩽ OPT

Price of explainability is at most height of the tree, and hence at most k.

Also, there are instances where the price of explainability is at least log k.
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The independent works in 2021

Makarychev and Shan:
O(log k log log k)

Gamlath, Jia, Polak, Svensson:
O(log2 k)

Esfandiari, Mirrokni, Narayanan:
O(min(log k log log k, d log d))



Finally, in 2023

Gupta, Pitty, Svensson, Yuan:
O(log k)



Open problems

What is price of explainability for k-means?
It is between k and k log k.

What if we allows more than one dimension in threshold cuts?

Under what natural clusterability assumptions we could obtain
a lower price of explainability?
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Thank you!


