The story of explainable clustering

Adam Polak

ML in PL, Warsaw, October 28th, 2023
url = ("https://export.arxiv.org/api/query" +
"?search_query=au:\%22Adam\%20Polak\%22\&max_results=50")
feed = feedparser.parse(urllib.request.urlopen(url).read())
data $=$ [(entry.title, entry.summary) for entry in feed.entries]
url = ("https://export.arxiv.org/api/query" +
"?search_query=au:\%22Adam\%20Polak\%22\&max_results=50")
feed = feedparser.parse(urllib.request.urlopen(url).read())
data $=$ [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5") embeddings $=$ embed([abstract for _, abstract in data]).numpy()
url = ("https://export.arxiv.org/api/query" +
"?search_query=au:\%22Adam\%20Polak\%22\&max_results=50")
feed $=$ feedparser.parse(urllib.request.urlopen(url).read())
data $=$ [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")
embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
url = ("https://export.arxiv.org/api/query" +
"?search_query=au:\%22Adam\%20Polak\%22\&max_results=50")
feed $=$ feedparser.parse(urllib.request.urlopen(url).read())
data $=$ [(entry.title, entry.summary) for entry in feed.entries]
embed = hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")
embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
url = ("https://export.arxiv.org/api/query" +
"?search_query=au:\%22Adam\%20Polak\%22\&max_results=50")
feed = feedparser.parse(urllib.request.urlopen(url).read()) data $=$ [(entry.title, entry.summary) for entry in feed.entries] embed $=$ hub.load(
"https://tfhub.dev/google/universal-sentence-encoder-large/5")
embeddings = embed([abstract for _, abstract in data]).numpy()
clusters = sklearn.cluster.KMeans(n_clusters=6).fit_predict(embeddings)
pca = sklearn.decomposition.PCA(n_components=2)
coordinates = pca.fit_transform(embeddings)
for (x, y), (title, _) in zip(coordinates, data):
plt.text(x, y, title)
for i in range(max(clusters) + 1):
plt.scatter(coordinates[clusters==i, 0], coordinates[clusters==i, 1])

- On an extremal problem for poset dimension
- Counting Triangles in Large Graphs on GPU

Why is it hard to beat $O\left(n^{2}\right)$ for (...)
Tight Conditional Lower Bounds for (...)
Euler Meets GPU: Practical Graph (...)Online Coloring of Short Intervals

- Learning-Augmented Dynamic Power (...)

Bellman-Ford is optimal for shortest hop-bounded paths
Nearly-Tight and Oblivious Algorithms (...)Tight Vector Bin Packing with Few (...)Knapsack and Subset Sum with Small Items
Mixing predictions for online metric algorithms

- Learning-Augmented Maximum Flow
- Robust Learning-Augmented Caching (...)
- Equivalences between triangle and range (...)Monochromatic Triangles, Intermediate (...)
- Faster Monotone Min-Plus Product, Range (...)
- On Dynamic Graph Algorithms with Predictions
- Paging with Succinct PredictionsOn Minimizing Tardy Processing Time (...)
- Memoryless Worker-Task Assignment with (...)
- On an extremal problem for poset dimension

Fine-grained complexity

- Counting Triangles in Large Graphs on GPU

Why is it hard to beat $O\left(n^{2}\right)$ for (...)
Tight Conditional Lower Bounds for (...)
Euler Meets GPU: Practical Graph (...)
Online Coloring of Short Intervals

- Learning-Augmented Dynamic Power (...)

Bellman-Ford is optimal for shortest hop-bounded paths

```
Nearly-Tight and Oblivious Algorithms (...)
Tight Vector Bin Packing with Few (...)
Knapsack and Subset Sum with Small Items
Equivalences between triangle and range (...)
Monochromatic Triangles, Intermediate (...)
- Faster Monotone Min-Plus Product, Range (...)
```

- On Dynamic Graph Algorithms with Predictions
- Paging with Succinct Predictions

```
On Minimizing Tardy Processing Time (...)
- Memoryless Worker-Task Assignment with (...)
```


Fine-grained complexity

Fine-grained complexity

Clustering can be hard to explain

Clustering can be hard to explain

[^0]
Decision tree is easier to understand

Decision tree is easier to understand

weight $\geqslant 100$

Decision tree is easier to understand

weight $\geqslant 100$ AND
age $\geqslant 90$

Decision tree is easier to understand

weight $\geqslant 100$ AND
age $\geqslant 90$ AND
unvaccinated

Explainable clustering

A threshold tree is a binary tree-
where each non-leaf node is an axis-aligned threshold cut.
An explainable k-clustering is one formed by a threshold tree with k leaves.

Price of explainability

How much more expensive is an optimal explainable clustering?

Price of explainability

How much more expensive is an optimal explainable clustering?

Can we find a good explainable clustering efficiently?

Price of explainability

How much more expensive is an optimal explainable clustering?

Can we find a good explainable clustering efficiently?

First introduced and studied by Moshkovitz, Dasgupta, Rashtchian, Frost (ICML 2020)

Let's focus on k-median

Input: points X in \mathbb{R}^{d}
Distance: L1-norm
i.e. $\operatorname{dist}(x, y)=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|$

Goal: find k centers C minimizing
$\sum_{x \in X} \min _{c \in C} \operatorname{dist}(x, y)$

Let's focus on k-median

Input: points X in \mathbb{R}^{d}
Distance: L1-norm
i.e. $\operatorname{dist}(x, y)=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|$

Goal: find k centers C minimizing
$\sum_{x \in X} \min _{c \in C} \operatorname{dist}(x, y)$

$$
O P T=a+b+c+d+e+f
$$

General approach

Transform given reference clustering to an explainable clustering

General approach

Transform given reference clustering to an explainable clustering
Keep splitting until one leaf per center

General approach

Transform given reference clustering to an explainable clustering
Keep splitting until one leaf per center
\square
$\star \star \star$

General approach

Transform given reference clustering to an explainable clustering
Keep splitting until one leaf per center

General approach

Transform given reference clustering to an explainable clustering
Keep splitting until one leaf per center

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut
= a cut that separates the fewest number of points from their closest centers

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut
= a cut that separates the fewest number of points from their closest centers

$$
\star \star \star
$$

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut
= a cut that separates the fewest number of points from their closest centers

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut
= a cut that separates the fewest number of points from their closest centers

Moshkovitz-Dasgupta-Rashtchian-Frost analysis

\#points separated by min-cut • distance to furthest center \leqslant OPT

Moshkovitz-Dasgupta-Rashtchian-Frost analysis

\#points separated by min-cut • distance to furthest center \leqslant OPT

$$
O P T(\text { left })+O P T(\text { right }) \leqslant O P T
$$

Moshkovitz-Dasgupta-Rashtchian-Frost analysis

\#points separated by min-cut • distance to furthest center \leqslant OPT

$$
O P T(\text { left })+O P T(\text { right }) \leqslant O P T
$$

cost increase at each level \leqslant OPT

Moshkovitz-Dasgupta-Rashtchian-Frost analysis

\#points separated by min-cut - distance to furthest center \leqslant OPT

$$
O P T(\text { left })+O P T(\text { right }) \leqslant O P T
$$

cost increase at each level $\leqslant O P T$

Price of explainability is at most height of the tree, and hence at most \boldsymbol{k}.

Moshkovitz-Dasgupta-Rashtchian-Frost analysis

\#points separated by min-cut \cdot distance to furthest center $\leqslant O P T$

$$
O P T(\text { left })+O P T(\text { right }) \leqslant O P T
$$

cost increase at each level \leqslant OPT

Price of explainability is at most height of the tree, and hence at most \boldsymbol{k}.

Also, there are instances where the price of explainability is at least $\log k$.

Moshkovitz-Dasgupta-Rashtchian-Frost algorithm

While there is a leaf with more than one center, select a min-cut

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

$$
x_{1} \leq 0.4
$$

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

$$
x_{1} \leq 0.4
$$

The TCS algorithm

While there is a leaf with more than one center, select a min-cut select a cut uniformly at random

The independent works in 2021

Makarychev and Shan:
$O(\log k \log \log k)$

Gamlath, Jia, Polak, Svensson: $O\left(\log ^{2} k\right)$

Esfandiari, Mirrokni, Narayanan:
$O(\min (\log k \log \log k, d \log d))$

Finally, in 2023

Gupta, Pitty, Svensson, Yuan:
$O(\log k)$

Open problems

What is price of explainability for k-means?
It is between k and $k \log k$.

Open problems

What is price of explainability for k-means?
It is between k and $k \log k$.

What if we allows more than one dimension in threshold cuts?

Open problems

What is price of explainability for k-means?
It is between k and $k \log k$.

What if we allows more than one dimension in threshold cuts?

Under what natural clusterability assumptions we could obtain a lower price of explainability?

Thank you!

[^0]: $0.6 \cdot$ weight $+0.7 \cdot$ age $+2 \cdot$ vaccinated $\leqslant 1.5$ AND
 $0.9 \cdot$ location $+1.4 \cdot$ weight $+0.7 \cdot$ age $\geqslant 2.5$

