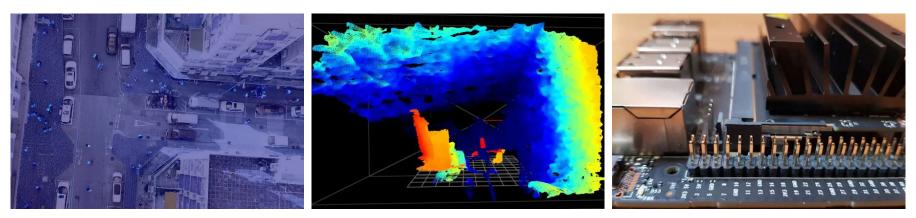
### ENHANCING LUNAR ROBOTICS ROVER THROUGH DEEP LEARNING AND EDGE A

### Bartosz Ptak, Dominik Pieczyński, Marek Kraft

Poznań University of Technology, Institute of Robotics and Machine Intelligence




MLinPL Conference, 27.10.2023

### About us



### **Computer Vision Laboratory** Poznań University of Technology



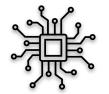
Computer vision and signal processing

Perception beyond visible spectrum

Edge AI and embedded systems

### **Project motivation**

The growing number of lunar missions and limitations in Moon-Earth communications create the need for a DPU capable of processing at least some of the data on the lunar surface, thereby **reducing data transfer needs** to Earth and **increasing rover autonomy**.


### **Project outline**



Develop a **deep learning** model for **segmenting rocks** on the **lunar surface** 







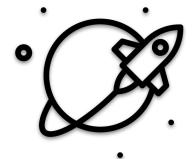
Deploy the model on **Edge AI** device with the **FPGA accelerator** 



Test the system in an **analog lunar mission** 



Integrate the rover with Edge Al device and robotic software


### New Space paradigm

Approach:

 The usage of consumer electronics instead of qualified special devices

### **Benefits:**

- Reduced time and costs
- Rapid Innovation
- Increased Accessibility



# Edge AI - features

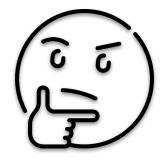


onboard processing

- > no data streaming, permanent latency
- improved privacy and security



offline operation


- ➤ "order -> wait -> receive" approach
- reduced cost



- energy-efficient
  - Iower power consumption
  - ➤ much higher FLOPS/W ratio

### Edge AI - limitations

- processing power
- ➤ memory
- ➤ parallel processing
- ≻ storage
- support for deep learning layers
- > weight quantisation



### Edge AI - devices



**NVIDIA Jetson Family** 



AMD/Xilinx Versal Devboards



STM32 AI Devboards







Intel VPU Accelerators

Hailo AI Accelerators

Google Coral TPU Accelerators

### Edge AI devices in Space



Raspberry Pi Zero-based GSPACS Cubesat (launched December 2021)



Global Hyperspectral Observation Satellite constellation with Jetson AGX Xavier (3 of 6 have been launched)



MoonRanger rover with Nvidia Jetson TX2i (launch delayed to November 2023)

https://community.element14.com/technologies/sensor-technology/b/blog/posts/world-s-first-rasOrin AGXpberry-pi-satellite-completes-its-mission https://space.skyrocket.de/doc\_sdat/ghost-1.htm https://parabolicarc.com/2022/07/14/cash-strapped-masten-space-furloughs-employees-moon-landing-mission-at-risk/

### Our robotic platform



Clearpath Husky rover

Project-modified Husky rover

### Our robotic platform



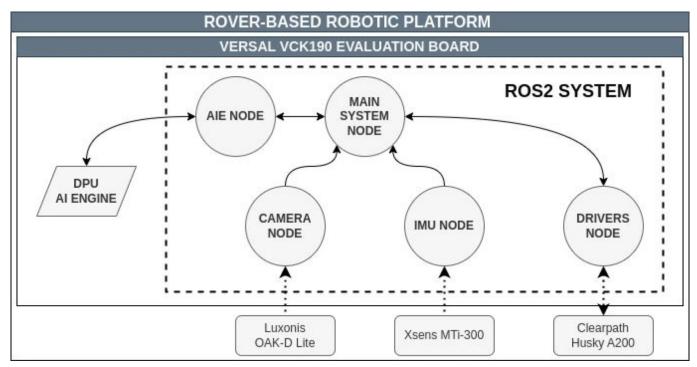
Clearpath Husky rover

Project-modified Husky rover

# Robot Operating System (ROS)

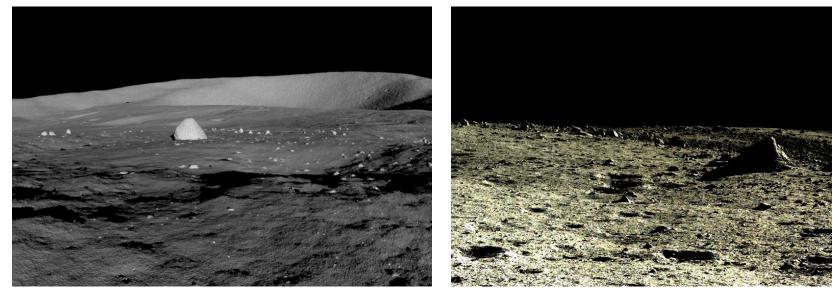
What is the ROS framework?

provides a set of tools, libraries, and conventions for developing and controlling robotic systems


# **EROS**

Why SpaceROS?

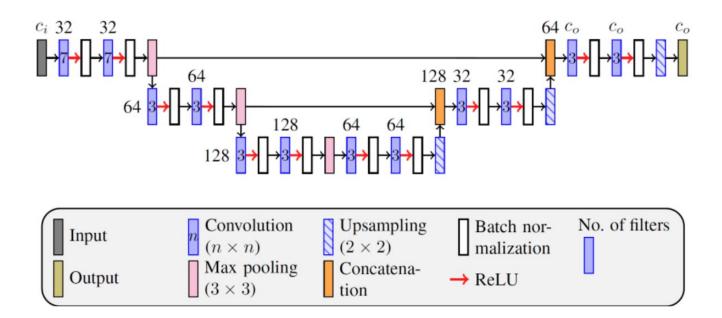
- provides software aligned with aerospace standards
- $\succ$  ease the adoption of the popular libraries




### System scheme



AIE - Artificial Intelligence Engine IMU - Internal Measurement Unit ROS - Robot Operating System


### Dataset - Artificial Lunar Landscape Dataset (ALLD)

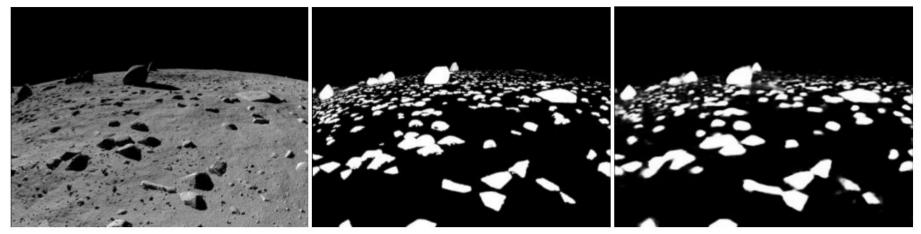


Sample image from real part of ALLD

Sample image from synthetic part of ALLD

### Network architecture




"Towards robust cloud detection in satellite images using U-Nets" B. Grabowski, M. Ziaja, M. Kawulok, and J. Nalepa

### Results and weights quantisation

| Stage    | Loss   | Precision | Recall | Dice   | Jaccard | Dataset |
|----------|--------|-----------|--------|--------|---------|---------|
| float    | 0.3097 | 0.6764    | 0.7552 | 0.6977 | 0.5678  | ALLD    |
| quant    | 0.3101 | 0.6929    | 0.7428 | 0.7009 | 0.5722  | ALLD    |
| compiled | 0.3085 | 0.6966    | 0.7399 | 0.7017 | 0.5733  | ALLD    |

float - "raw" model weights after the training process quant - weights quantised from FP16 to INT8 compiled - quantised weights compiled to the FPGA layers

### Example prediction (synthetic ALLD)



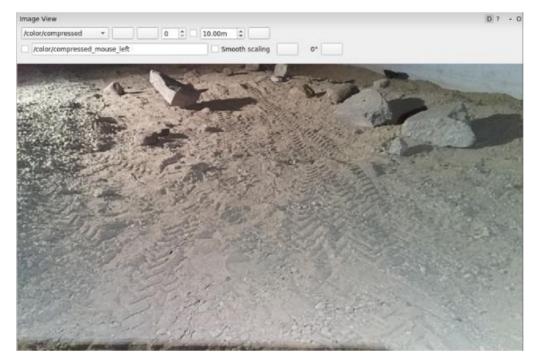

Input image

Ground-truth label

Model output

### Example prediction (real ALLD)




## Analogue lunar research station (Lunares)



LUNARES Mobile Research Station

The rover during testing

### Analogue lunar research station (Lunares)



Example frame from the camera mounted on the rover

### Results and weights quantisation

| Stage    | PowerJaccard | Precision | Recall | DiceCoeff | JaccardIndex | Dataset |
|----------|--------------|-----------|--------|-----------|--------------|---------|
| float    | 0.4328       | 0.7932    | 0.6322 | 0.6527    | 0.5290       | Lunares |
| quant    | 0.4449       | 0.7607    | 0.6397 | 0.6421    | 0.5160       | Lunares |
| compiled | 0.4434       | 0.7749    | 0.6339 | 0.6426    | 0.5174       | Lunares |

float - "raw" model weights after the training process quant - weights quantised from FP16 to INT8 compiled - quantised weights compiled to the FPGA layers

## Example prediction (Lunares)



# Thank you

#### **Bartosz Ptak**

bartosz.ptak@doctorate.put.poznan.pl

vision.put.poznan.pl



"Husky rover on the Moon" by DALL·E



This work was funded by European Space Agency OSIP, PO number: 4000138073, COGNITION project.