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Perception with 3D sensors
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Perception with 3D sensors
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More complex clouds
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Research areas: 3D point clouds Papers With Code

Computer Vision Computer Vision

3D Semantic Segmentation 3D Object Classification

3D Semantic Segmentation Is a computer vision task that involves dividing a 3D point cloud or 3D mesh into
- ; e _— " ; ’ " 2 isas

semantically meaningful parts or regions. The goal of 3D semantic segmentation Is to identify and label different 3D Object Classification is the task of predicting the class of a 3D object point cloud. It is a voxel level prediction p

objects and parts within a 3D scene, which can be used for applications such as robotics, autonomous driving, where each voxel is classified into a category. The popular benchmark for this task is the ModelNet dataset. The ; ~

models for this task are usually evaluated with the Classification Accuracy metric.
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Benchmarks

These leaderboards are used to track progress in 3D Semantic Segmentation

Computer Yision Computer Vision Computer Vision

3D Semantic Scene Completion - 3D Place Recognition 3D Instance Segmentation

r !
Irks « 3 datas apers with code « 1 benchmarks « 1 dataset: 47 papers wit yde = B benchmarks » L
This task was introduced in "Semantic Scene Completion from a Single Depth Image® B - Pointcloud-based place recognition and retrieval Image:
(hitps:arxivorg/abs/1611.08974) at CVPR 2017 . The target is to infer the dense 3D voxelized semantic scene ? ¥ “: . - *
from an incompléted 30D input (e.g. point cloud, depth map) and an optional RGE image. A recent summary can :
be found in the paper “3D Semantic Scene Completion: a Survey® (hitps.farxiv.org/abs/2103.074466), published Benchmarks Add a R
at 1JCV 2021 Content
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Computer Vision

3D Part Segmentation

’

A e 2 ben " stacet . .
Segmenting 3D object parts £ . f - PO I n t C I 0 u d C 0 m pl etl O n
| it 1§ 4
- S 5 ! J- 63 papers with code * 3 benchmarks * 4 datasets
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These leaderboards are used to track progress in 3D Part Segmentation

)' \ This task has no description! Wol
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Exemplary applications in robotics

3D Semantic Segmentation "

A0 Semantic Sagmentation i 3 compaler vhicn Lak that ol dividing 3 30 point doud or 30 =eif into
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3D Semantic Scene Completion
/ &P
This task was introduced in “Semantic Scene Completion from 2 Single Depth Image” - i s
Mg araivorg oy 161 108974) 3t COVPR 2017 . The Larget & 10 infer the dense 3D vonelized semantic scens '(? B |
: - ) "t @ .
from an incompieted 3D nput (e point doud, degth map) and an optional RGB image. A recent summary can 3 3D |T'IS|ZEII'ICE Segmentafml‘l
Be found in the paper “3D Semantic Scene Campletion: 2 Survey” (Wips faraiv org G002 103 07455), published
at ICV 2021 Content
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Computer Vision

Point Cloud Completion

naners with code = 3 benchma airks = 4 dakacels
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This task has no description! Would you like to contribute one?
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_| 3D Object Classification

Yuan, W., Khot, T., Held, D., Mertz, C. and Hebert, M., 2018, September. Pcn: Point

completion network. In 2018 international conference on 3D vision (3DV) (pp. 728-737).
F0 Obgecy ClassiMcplion 5 The Lisk of predictirg. the Clins of 3 30 olje( T podng Choued, 1 5 3 vomol levwed predliction

IEEE vl @ach voeel iS5 Classifed S0 3 Caleory. The populsr Benchensrh for this task is the ModeiNeT datuet The *’

epciis Tor This Task ar ey evaluaied with the CLassitg athoen ACCysracy Frirg E —

Source: Soltan, S.; Oleinikov, A.; Demirci, M.F.; Shintemirov, A. Deep e

. y Learning-Based Object Classification and Position Estimation Pipeline for
U n |ted RO bOtS Potential Use in Robotized Pick-and-Place Operations. Robotics 2020, 9, 63.
= . https://doi.org/10.3390/robotics9030063




Challenge ?
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point clouds annotation is time consumin

Semantic KITTI Point Labeler (open source)

Point Labeler - scene-0655

File Tools View Settings

|
B8 6 & DBV E seens hot

We provided regular feedback to the annotators to 1m-
prove the quality and accuracy of labels. Nevertheless, a
single annotator also venfied the labels 1n a second pass,
1.e., corrected inconsistencies and added missing labels. In
summary, the whole dataset cmupri:-'.ﬁz-'.und over
1 400 hours of labeling effort have been invested with addi-

U - tional 10 — 60 minutes verification and correction per tile,
- resulting 1n a total of overfl 700 hours
[ =

POINTS OVERWRITE 1.984.440 70%) 00:42:30

3D point cloud labeling tool by Segments.ai (proprietary)
100 m
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Available open source data

KITTI

nuScenes What about other environments?
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Different perspective: robot navigation use case
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Proof of Concept — underground parking use case

1. Segmenting cars instances from single
LIDAR scans

2. Binary segmentation: cars vs everything
else

3. No ground truth for training available from
actual dataset
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Approach 1: directly use avaliable open source

datasets

Accuracy
. lest Original Original Our
Train KITTI Pandaset dataset
Original KITTI 90.3 87.3 96.1
Original 99.6 99.76 90.4
> Pandaset
loU
est | original Original 0
: gina rigina ur
T o Train KITTI Pandaset dataset
Original KITTI 97 86.2 41.4
/; Original 85.9 98 75.9
- A Pandaset
{7
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original lidar

simulated lidar

LA

T
e
P

B

Preprocessing to align training data with the density of UR data
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Approach 2: preprocess data before using

Accuracy
Train lest Original | Processed | Original | Processed Our
KITTI KITTI Pandaset | Pandaset dataset
Original KITTI 99.3 86.7 87.3 78.6 96.1
Processed 6.3 97.3 16.5 84.3 87.6
KITTI
Original 99.6 87.9 99.76 85.2 90.4
Pandaset
Processed 38.8 90.5 44.3 08.3 86.2
Pandaset
loU
Train 1est | original |Processed | Original | Processed Our
KITTI KITTI Pandaset | Pandaset dataset
Original KITTI 97 36.8 86.2 66.2 41.4
Processed 5.4 88.2 16.5 82 76.3
KITTI
Original 85.9 62.9 98 79.9 75.9
Pandaset
Processed 0.1 56.7 35.1 89.8 69.6
Pandaset




dataset

Approach 3: insert object instances from other

Accuracy loU Accuracy loU

KITTI KITTI UR UR

Processed KITTI 97.3 88.2 87.6 76.3
Enhanced KITTI 98.1 91.1 90.7 62.7

Inserting object instances from one dataset into background from
another.
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Approach 4: naive synthetic instances
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Accuracy loU

Processed KITTI 87.6 76.3
Original Pandaset 90.4 75.9
Synthetic 54.7 51.9




Approach 5: augmented synthetic instances

1. Noise as normal distribution of fluctuations of each
point

2. Dropout of random number of points

3. Shift up/down, left/right of complete point cloud
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Results of segmentation after synthetic data augmentation. Ground truth (left), segmentation result
(right).
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Accuracy loU

Processed KITTI 87.6 76.3

Original Pandaset 90.4 75.9

Synthetic 54.7 51.9

Synthetic (noise 58.3 52.8
augmentations)

Synthetic (full augmentation) 63.3 56.1




Open point: advanced modelling of noise

Ray-Casted Lidar Point Cloud Final Simulation LIDAR

6 DOF Sensor Pose Composed Scene

o™

3D Object Bank

Learning to
Drop Rays j

Sensor Simulation

Figure 2: LiDARsim Overview Architecture: We first create the assets from real data, and then compose them into a scene
and simulate the sensor with physics and machine learning.
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Figure 6: Left: Raydrop physics explained: Multiple real-world factors and sensor biases determine if the signal is detected
by LIDAR receiver. Right: Raydrop network: Using ML and real data to approximate the raydropping process.
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Train Set Overall Vehicle Background
CARLA" ' (Baseline) 0.65 0.36 0.94
LiDARsim (Ours) 0.89 0.79 0.98
SemanticKITTI (Oracle) 0.90 0.81 0.99

Manivasagam, Sivabalan, et al. "Lidarsim:
Realistic lidar simulation by leveraging the real
world." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition. 2020.



The actual challenge

Lack of sufficient training data

Prohibitively time-consuming data
tagging
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Thanks for your
attention!

Reach me out for more [] =5 ]

topics related to ML in 1:':'*"”'5_
robotics = By
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