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Classification of Positive Unlabeled (PU) Data

Partially observable variant of classical classification model
when PX ,Y , X ∈ X and Y ∈ {0, 1} are observable.
Now, only PX ,S , S ∈ {0, 1} will be observable, where S = Y
with a certain probability.
Assumption:

P(S = 1|X ,Y = 0) = 0

Thus
Y = 0 ⇒ S = 0

Y = 1 ⇒ S=0 or S=1

Many instances of practical situations when such situation
occurs ...
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Citizens’ assembly example

Random pick is performed for climate change citizens’
assembly which would prepare suggestions for a government on
this issue. One can opt in or opt out of becoming a member.

Y = 1: climate change believer, Y = 0: climate change
denialist;

S = 1: one opts in, S = 0: one opts out;

We have
S = 1 ⇒ Y = 1

however
S = 0 ⇒ Y=0 or S=0

Many other examples in medicine, surveys, NLP,
recomendation systems, ecology etc;
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Supervised classification vs PU classificationa

aGong et al (2021)
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Posterior probability and propensity score

Posterior probability of Y (unobservable)

y(x) = P(Y = 1|X = x)

Propensity score (unobservable)

e(x) = P(S = 1|Y = 1,X = x)

Posterior probability of S (observable)

s(x) = P(S = 1|X = x)
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Selection biased PU data

We have

s(x) = y(x)e(x)

Objective: to model situations when e(x) ̸≡ C
(Selection Bias, Selected Completely At Random (SCAR)
assumption does not necessarily hold)
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Joint modelling of y(x) and e(x)

Estimation of s(x) does not yield direct conclusions about
y(x).
Can we draw conclusions about y(x)& e(x) simultaneously ?

s(x) = y(x)e(x) = e(x)y(x)

Obvious problem: y(x) and s(x) may be swapped ...
Is it possible to identify y(x) and e(x) up to a swap ?

The answer is yes, at least in some parametric models.
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Double logistic model: identifiability

Let σ(s) = 1/(1 + e−s) is a logistic function and assume that
both y(x) and e(x) are governed by logistic model

y(x) = σ(β∗
0 + β∗Tx) e(x) = σ(γ∗

0 + γ∗Tx) (∗)

β̃ = (β0, β
T )T ....

Theorem

In double logistic model parameters β̃∗ and γ̃∗ are uniquely
defined up to interchange of y(x) and e(x) i.e. if for some β̃
and γ̃, s(x) = σ(β0 + βTx)σ(γ0 + γTx) for all x ∈ Rp, then
(β̃, γ̃) = (β̃∗, γ̃∗) or (β̃, γ̃) = (γ̃∗, β̃∗).
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Expected loglikelihood: JOINT method

Logistic model is fitted for both y(x) and e(x). Expected log-likelihood:

Q(β̃, γ̃) = (1)

EX ,S [S log sβ̃,γ̃(X ) + (1− S) log(1− sβ̃,γ̃(X ))],

where sβ̃,γ̃(x) = σ(β0 + βT x)σ(γ0 + γT x).

Q(β̃, γ̃) is not concave function.

Theorem

Let assumptions of Theorem 1 hold and |β̃∗|1 > |γ̃∗|1. Then (i)

(β̃∗T , γ̃∗T )T = arg max
(β̃,γ̃):|β̃|1>|γ̃|1

Q(β̃, γ̃)

and (β̃∗T , γ̃∗T )T is the only maximiser of Q(β̃, γ̃).

This leads to JOINT method. Maximiser of Q̂(β̃, γ̃) is proved to be
consistent.
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First proposal: alternate maximisation of two
Fisher-consistent score functions for PX ,Y

Let y(x , β̃) = σ(β0 + βTx) and e(x , γ̃) = σ(γ0 + γTx).
We will look for solutions of empirical counterparts of two
concave optimisation problems solved alternately.
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The first one based on:

W (x , β̃) = y(x , β̃∗) log y(x , β̃) + (1− y(x , β̃∗)) log(1− y(x , β̃))

we have
argmaxβ̃EXW (X , β̃) = β̃∗

and

W (x , β̃) = ES|X=x(w1(S , x) log y(x , β̃) + w0(S , x) log(1− y(x , β̃))

for

w1(s, x) = I{S = 1}+ I{S = 0} × P(Y = 1|S = 0,X = x) =

= I{S = 1}+ I{S = 0} (1− e(x))

e(x)
/
(1− s(x))

s(x)

= I{S = 1}+ I{S = 0}OR(x)

and w0(s, x) = P(Y = 0|S = 0,X = x).
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Second equation

Analogously

argmaxγ̃EX |Y=1[e(X , γ̃∗) log e(X , γ̃) + (1− e(X , γ̃∗)) log(1− e(X , γ̃))]

= γ̃∗

But ES|Y=1,XS = e(X , γ̃∗)

EX |Y=1[e(X , γ̃∗) log e(X , γ̃) + (1− e(X , γ̃∗)) log(1− e(X , γ̃))] =

= ES,X |Y=1K (S ,X , γ̃)

where K (S ,X , γ̃) = S log e(X γ̃) + (1− S) log(1− e(X , γ̃)).

Jan Mielniczuk Double logistic regression approach to biased positive-unlabeled data



The empirical counterpart of EXW (X , β̃):

Wn(β̃) =
1

n

n∑
i=1

{
ŵ1(Si ,Xi ) log y(Xi , β̃)+

ŵ0(Si ,Xi ) log(1− y(Xi , β̃))
}
, (2)

and counterpart of ES,X |Y=1K (S ,X , γ̃) as

Kn(γ̃) =
n∑

i=1

I{i ∈ P̂}
[
Si log e(Xi , γ̃) + (1− Si ) log(1− e(Xi , γ))

]
,

where P = {i : Yi = 1} , P̂ = ̂{i : Yi = 1} .
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Two Models/Equations algorithm

We repeat the following two steps until convergence:

1 Model 1. Solve β̂n = argmaxβ̃ Wn(β̃).

2 Calculate ŷ(Xi ) = y(Xi , β̂n).

3 Model 2. Solve γ̂n = argmaxγ R̂n(γ̃), where

K̂n(γ̃) =
n∑

i=1

I (i ∈ P̂)K (Si ,Xi , γ̃),

4 Calculate ê(Xi ) = e(Xi , γ̂).

5 Update ŝ(Xi ) = ê(Xi )ŷ(Xi ) and

ÔR(Xi ) =
1− ê(Xi )

ê(Xi )
/
(1− ŝ(Xi )

ŝ(Xi )

.
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Estimation of P = {i : Yi = 1}

P̂ = {Si = 1 or ŷ(xi) > t},
where t is empirical quantile of order α of the set

{ŷ(Xi), Si = 1},

α = P̂(S = 1)
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Second proposal: JOINT method

(Xi ,Yi , Si), i = 1, . . . , n iid sample drawn from P(X ,Y ,S).
Observed data (Xi , Si), i = 1, . . . , n (single training sample
scenario).
Empirical likelihood for (Xi , Si):

Qn(β̃, γ̃) =
1

n

n∑
i=1

Si log sβ̃,γ̃(Xi) + (1− Si) log(1− sβ̃,γ̃(Xi))

JOINT estimators: maximisers of Qn(·, ·).
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Regret of JOINT estimator

For any r > 0 and θ := (β, γ), θ∗ := (β∗, γ∗)

θ̂ = arg minθ:|θ−θ∗|≤rQn(θ)

Theorem

If Xi are subgaussian with parameter µ then for any s ∈ (0, 1)
we have

P(Q
(
θ̂)− Q(θ∗)︸ ︷︷ ︸
regret of θ̂

≤ 32µr

s

√
log p

n

)
≥ 1− s
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Labelling scenarios

1 Scenario 1. We consider constant propensity score
function e(x) = P(S = 1|Y = 1,X = x) = c , where c is
label frequency which varies in simulations.

2 Scenario 3. Propensity score function is defined as
e(x) =

∏k
j=1[sc(x(j), p

−, p+)]1/k , where x(j) is j-th
coordinate of x and
sc(x(j), p−, p+) := p− + x(j)−min x(j)

max x(j)−min x(j)
(p+ − p−).

8 data sets from UCI repository artificially labeled using
scenarios above.
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Methods considered

1 JOINT
2 Two Models (TM)
3 TM SIMPLE
ê(x) = ênaive(x) = (1 + ŝ(x))/2, ŷ(x) from
argmaxβ̃Wn(β̃).

4 SAR-EM (Bekker Davis (2019))
5 LBE (Gong et al (2021))
6 Oracle (Y known)
7 NAIVE
ŷ(x) based on maximisation loglikelihood for (Xi , Si)
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Table: Accuracy1 for scenario 3, k = 5, p− = 0.2 and p+ = 0.6

NAIVE TM EM TM JOINT
simple

Artif1 0.664 0.777 0.830 0.857 0.816
Artif2 0.643 0.743 0.780 0.805 0.762
diabetes 0.682 0.726 0.732 0.714 0.710
BCancer 0.814 0.877 0.903 0.908 0.905
heart-c 0.636 0.654 0.636 0.679 0.622
credit-a 0.624 0.688 0.691 0.765 0.676
adult 0.767 0.795 0.828 0.778 0.809
vote 0.735 0.750 0.757 0.837 0.733
wdbc 0.766 0.825 0.838 0.852 0.806
spambase 0.633 0.648 0.690 0.810 0.775
avg. rank 5.8 4.2 3.1 2.5 4.4

1Accuracy of classifer based on ŷ(x)
Jan Mielniczuk Double logistic regression approach to biased positive-unlabeled data



Table: Approximation error2 for scenario 3, k = 5, p− = 0.2 and p+ = 0.6.

NAIVE TM EM TM JOINT
simple

Artif1 0.292 0.227 0.147 0.118 0.159
Artif2 0.300 0.243 0.177 0.139 0.194
diabetes 0.206 0.128 0.144 0.162 0.171
BCancer 0.180 0.139 0.093 0.083 0.098
heart-c 0.270 0.222 0.249 0.219 0.262
credit-a 0.287 0.218 0.229 0.173 0.283
adult 0.150 0.093 0.071 0.134 0.091
vote 0.272 0.228 0.197 0.148 0.275
wdbc 0.219 0.186 0.147 0.117 0.197
spambase 0.308 0.250 0.237 0.088 0.194
avg. rank 5.9 4.0 3.2 2.5 4.4

2n−1
∑n

i=1 |ŷ(Xi )− ŷoracle(Xi )|
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Issues

Estimation of the set P = {i : Yi = 1} crucial for
performance of TM algorithm

Feature selection under SCAR/ for an arbitrary propensity
score ?

Testing SCAR assumption H0 : γ̃ = (γ0, 0
T )T

Under-performance of JOINT method (unlike in SCAR
scenario) is due to maximisation issues (MM algorithm
applied at present)
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