# Double logistic regression approach to biased positive-unlabeled data

#### Jan Mielniczuk

- Institute of Computer Science, Polish Academy of Sciences
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology



### ML in PL'2023 Based on joint research with K. Furmańczyk, P. Teisseyre and W. Rejchel

Jan Mielniczuk

Double logistic regression approach to biased positive-unlabeled data

Partially observable variant of classical classification model when  $P_{X,Y}$ ,  $X \in \mathcal{X}$  and  $Y \in \{0,1\}$  are observable. Now, only  $P_{X,S}$ ,  $S \in \{0,1\}$  will be observable, where S = Ywith a certain probability. Assumption:

$$P(S=1|X,Y=0)=0$$

Thus

$$Y = 0 \Rightarrow S = 0$$
  
 $Y = 1 \Rightarrow S=0 \text{ or } S=1$ 

Many instances of practical situations when such situation occurs ...

Random pick is performed for climate change citizens' assembly which would prepare suggestions for a government on this issue. One can opt in or opt out of becoming a member.

- Y = 1: climate change believer, Y = 0: climate change denialist;
- S = 1: one opts in, S = 0: one opts out;

We have

$$S=1 \Rightarrow Y=1$$

however

$$S = 0 \implies Y = 0 \text{ or } S = 0$$

Many other examples in medicine, surveys, NLP, recomendation systems, ecology etc;

# Supervised classification vs PU classification<sup>a</sup>

<sup>a</sup>Gong et al (2021)



Posterior probability of Y (unobservable)

$$y(x) = P(Y = 1 | X = x)$$

Propensity score (unobservable)

$$e(x) = P(S = 1 | Y = 1, X = x)$$

Posterior probability of S (observable)

$$s(x) = P(S = 1 | X = x)$$

#### We have

$$s(x) = y(x)e(x)$$

Objective: to model situations when  $e(x) \neq C$ (Selection Bias, Selected Completely At Random (SCAR) assumption does not necessarily hold) Estimation of s(x) does not yield direct conclusions about y(x).

Can we draw conclusions about y(x) & e(x) simultaneously ?

$$s(x) = y(x)e(x) = e(x)y(x)$$

Obvious problem: y(x) and s(x) may be swapped ... Is it possible to identify y(x) and e(x) up to a swap? Estimation of s(x) does not yield direct conclusions about y(x).

Can we draw conclusions about y(x) & e(x) simultaneously ?

$$s(x) = y(x)e(x) = e(x)y(x)$$

Obvious problem: y(x) and s(x) may be swapped ... Is it possible to identify y(x) and e(x) up to a swap? The answer is yes, at least in some parametric models.

## Double logistic model: identifiability

Let  $\sigma(s) = 1/(1 + e^{-s})$  is a logistic function and assume that both y(x) and e(x) are governed by logistic model

$$y(x) = \sigma(\beta_0^* + \beta^{*T} x) \qquad e(x) = \sigma(\gamma_0^* + \gamma^{*T} x) \quad (*)$$
$$\tilde{\beta} = (\beta_0, \beta^T)^T \dots$$

## Double logistic model: identifiability

Let  $\sigma(s) = 1/(1 + e^{-s})$  is a logistic function and assume that both y(x) and e(x) are governed by logistic model

$$y(x) = \sigma(\beta_0^* + \beta^{*T} x) \qquad e(x) = \sigma(\gamma_0^* + \gamma^{*T} x) \quad (*)$$
$$\tilde{\beta} = (\beta_0, \beta^T)^T \dots$$

#### Theorem

In double logistic model parameters  $\tilde{\beta}^*$  and  $\tilde{\gamma}^*$  are uniquely defined up to interchange of y(x) and e(x) i.e. if for some  $\tilde{\beta}$ and  $\tilde{\gamma}$ ,  $s(x) = \sigma(\beta_0 + \beta^T x)\sigma(\gamma_0 + \gamma^T x)$  for all  $x \in \mathbb{R}^p$ , then  $(\tilde{\beta}, \tilde{\gamma}) = (\tilde{\beta}^*, \tilde{\gamma}^*)$  or  $(\tilde{\beta}, \tilde{\gamma}) = (\tilde{\gamma}^*, \tilde{\beta}^*)$ .

# Expected loglikelihood: JOINT method

Logistic model is fitted for both y(x) and e(x). Expected log-likelihood:

$$Q(\tilde{\beta}, \tilde{\gamma}) =$$

$$E_{X,S}[S \log s_{\tilde{\beta}, \tilde{\gamma}}(X) + (1 - S) \log(1 - s_{\tilde{\beta}, \tilde{\gamma}}(X))],$$
(1)

where 
$$s_{\tilde{\beta},\tilde{\gamma}}(x) = \sigma(\beta_0 + \beta^T x)\sigma(\gamma_0 + \gamma^T x)$$
.  
 $Q(\tilde{\beta},\tilde{\gamma})$  is *not* concave function.

#### Theorem

Let assumptions of Theorem 1 hold and  $|\tilde{\beta}^*|_1 > |\tilde{\gamma}^*|_1$ . Then (i)

$$( ilde{eta}^{*T}, ilde{\gamma}^{*T})^T = rg\max_{( ilde{eta}, ilde{\gamma}):| ilde{eta}|_1 > | ilde{\gamma}|_1} Q( ilde{eta}, ilde{\gamma})$$

and  $(\tilde{\beta}^{*T}, \tilde{\gamma}^{*T})^T$  is the only maximiser of  $Q(\tilde{\beta}, \tilde{\gamma})$ .

This leads to JOINT method. Maximiser of  $\hat{Q}(\tilde{\beta}, \tilde{\gamma})$  is proved to be consistent.

First proposal: alternate maximisation of two Fisher-consistent score functions for  $P_{X,Y}$ 

Let  $y(x, \tilde{\beta}) = \sigma(\beta_0 + \beta^T x)$  and  $e(x, \tilde{\gamma}) = \sigma(\gamma_0 + \gamma^T x)$ . We will look for solutions of empirical counterparts of two concave optimisation problems solved alternately. The first one based on:

$$W(x,\tilde{\beta}) = y(x,\tilde{\beta}^*) \log y(x,\tilde{\beta}) + (1 - y(x,\tilde{\beta}^*)) \log(1 - y(x,\tilde{\beta}))$$
  
we have

$$\operatorname{argmax}_{\tilde{\beta}} E_X W(X, \tilde{\beta}) = \tilde{\beta}^*$$

and

$$W(x,\tilde{\beta}) = E_{S|X=x}(w_1(S,x)\log y(x,\tilde{\beta}) + w_0(S,x)\log(1-y(x,\tilde{\beta})))$$

for

$$w_1(s,x) = I\{S=1\} + I\{S=0\} \times P(Y=1|S=0, X=x) =$$

$$= I\{S = 1\} + I\{S = 0\} \frac{(1 - e(x))}{e(x)} / \frac{(1 - s(x))}{s(x)}$$
$$= I\{S = 1\} + I\{S = 0\} OR(x)$$

and  $w_0(s,x) = P(Y = 0|S = 0, X = x)$ .

(B) (B)

э.

#### Analogously

$$\begin{split} \operatorname*{argmax}_{\tilde{\gamma}} E_{X|Y=1}[e(X,\tilde{\gamma}^*)\log e(X,\tilde{\gamma}) + (1 - e(X,\tilde{\gamma}^*))\log(1 - e(X,\tilde{\gamma}))] \\ &= \tilde{\gamma}^* \end{split}$$
But  $E_{S|Y=1,X}S = e(X,\tilde{\gamma}^*)$ 

 $E_{X|Y=1}[e(X,\tilde{\gamma}^*)\log e(X,\tilde{\gamma}) + (1 - e(X,\tilde{\gamma}^*))\log(1 - e(X,\tilde{\gamma}))] =$ 

$$= E_{S,X|\mathbf{Y}=\mathbf{1}}K(S,X,\tilde{\gamma})$$

where  $K(S, X, \tilde{\gamma}) = S \log e(X\tilde{\gamma}) + (1 - S) \log(1 - e(X, \tilde{\gamma})).$ 

The empirical counterpart of  $E_X W(X, \tilde{\beta})$ :

$$W_n(\tilde{\beta}) = \frac{1}{n} \sum_{i=1}^n \left\{ \hat{w}_1(S_i, X_i) \log y(X_i, \tilde{\beta}) + \hat{w}_0(S_i, X_i) \log(1 - y(X_i, \tilde{\beta})) \right\},$$

$$(2)$$

and counterpart of  $E_{S,X|Y=1}K(S,X,\tilde{\gamma})$  as

$$\mathcal{K}_n(\tilde{\gamma}) = \sum_{i=1}^n I\{i \in \hat{\mathcal{P}}\} \big[ S_i \log e(X_i, \tilde{\gamma}) + (1 - S_i) \log(1 - e(X_i, \gamma)) \big],$$

where  $\mathcal{P} = \{i: Y_i = 1\}$  ,  $\hat{\mathcal{P}} = \{i: \widehat{Y_i = 1}\}$  .

## Two Models/Equations algorithm

We repeat the following two steps until convergence:

**OMODE 1.** Solve  $\hat{\beta}_n = \arg \max_{\tilde{\beta}} W_n(\tilde{\beta})$ .

3 Calculate 
$$\hat{y}(X_i) = y(X_i, \hat{\beta}_n)$$
.

**Solve**  $\hat{\gamma}_n = \arg \max_{\gamma} \hat{R}_n(\tilde{\gamma})$ , where

$$\hat{\mathcal{K}}_n(\tilde{\gamma}) = \sum_{i=1}^n I(i \in \hat{\mathcal{P}}) \mathcal{K}(\mathcal{S}_i, X_i, \tilde{\gamma}),$$

$$\widehat{OR}(X_i) = \frac{1 - \hat{e}(X_i)}{\hat{e}(X_i)} / \frac{(1 - \hat{s}(X_i))}{\hat{s}(X_i)}$$

$$\hat{\mathcal{P}} = \{S_i = 1 \text{ or } \hat{y}(x_i) > t\},\$$

where t is empirical quantile of order  $\alpha$  of the set

$$\{\hat{y}(X_i), S_i = 1\},\$$
  
$$\alpha = \hat{P}(S = 1)$$

 $(X_i, Y_i, S_i), i = 1, ..., n$  iid sample drawn from  $P_{(X,Y,S)}$ . Observed data  $(X_i, S_i), i = 1, ..., n$  (single training sample scenario). Empirical likelihood for  $(X_i, S_i)$ :

$$Q_n(\tilde{\beta}, \tilde{\gamma}) = \frac{1}{n} \sum_{i=1}^n S_i \log s_{\tilde{\beta}, \tilde{\gamma}}(X_i) + (1 - S_i) \log(1 - s_{\tilde{\beta}, \tilde{\gamma}}(X_i))$$

JOINT estimators: maximisers of  $Q_n(\cdot, \cdot)$ .

## Regret of JOINT estimator

For any 
$$r > 0$$
 and  $\theta := (\beta, \gamma), \theta^* := (\beta^*, \gamma^*)$ 
$$\hat{\theta} = \arg \min_{\theta:|\theta-\theta^*| \le r} Q_n(\theta)$$

#### Theorem

If  $X_i$  are subgaussian with parameter  $\mu$  then for any  $s \in (0, 1)$  we have

$$P(\underbrace{Q(\hat{\theta}) - Q(\theta^*)}_{\text{regret of }\hat{\theta}} \le \frac{32\mu r}{s} \sqrt{\frac{\log p}{n}}) \ge 1 - s$$

- Scenario 1. We consider constant propensity score function e(x) = P(S = 1|Y = 1, X = x) = c, where c is label frequency which varies in simulations.
- Scenario 3. Propensity score function is defined as  $e(x) = \prod_{j=1}^{k} [sc(x(j), p^-, p^+)]^{1/k}$ , where x(j) is *j*-th coordinate of *x* and  $sc(x(j), p^-, p^+) := p^- + \frac{x(j) \min x(j)}{\max x(j) \min x(j)}(p^+ p^-)$ .

8 data sets from UCI repository artificially labeled using scenarios above.

## Methods considered

- JOINT
- Two Models (TM)
- TM SIMPLE  $\hat{e}(x) = \hat{e}_{naive}(x) = (1 + \hat{s}(x))/2, \ \hat{y}(x)$  from  $\operatorname{argmax}_{\tilde{\beta}} W_n(\tilde{\beta}).$
- SAR-EM (Bekker Davis (2019))
- IBE (Gong et al (2021))
- Oracle (Y known)
- NAIVE

 $\hat{y}(x)$  based on maximisation loglikelihood for  $(X_i, S_i)$ 

|           | NAIVE | TM<br>simple | EM    | тм    | JOINT |
|-----------|-------|--------------|-------|-------|-------|
|           |       |              |       |       |       |
| Artif1    | 0.664 | 0.777        | 0.830 | 0.857 | 0.816 |
| Artif2    | 0.643 | 0.743        | 0.780 | 0.805 | 0.762 |
| diabetes  | 0.682 | 0.726        | 0.732 | 0.714 | 0.710 |
| BCancer   | 0.814 | 0.877        | 0.903 | 0.908 | 0.905 |
| heart-c   | 0.636 | 0.654        | 0.636 | 0.679 | 0.622 |
| credit-a  | 0.624 | 0.688        | 0.691 | 0.765 | 0.676 |
| adult     | 0.767 | 0.795        | 0.828 | 0.778 | 0.809 |
| vote      | 0.735 | 0.750        | 0.757 | 0.837 | 0.733 |
| wdbc      | 0.766 | 0.825        | 0.838 | 0.852 | 0.806 |
| spambase  | 0.633 | 0.648        | 0.690 | 0.810 | 0.775 |
| avg. rank | 5.8   | 4.2          | 3.1   | 2.5   | 4.4   |

Table: Accuracy<sup>1</sup> for scenario 3, k = 5,  $p^- = 0.2$  and  $p^+ = 0.6$ 

<sup>1</sup>Accuracy of classifer based on  $\hat{y}(x)$ 

Double logistic regression approach to biased positive-unlabeled data

Jan Mielniczuk

|           | NAIVE | тм<br>simple | EM    | тм    | JOINT |
|-----------|-------|--------------|-------|-------|-------|
|           |       |              |       |       |       |
| Artif1    | 0.292 | 0.227        | 0.147 | 0.118 | 0.159 |
| Artif2    | 0.300 | 0.243        | 0.177 | 0.139 | 0.194 |
| diabetes  | 0.206 | 0.128        | 0.144 | 0.162 | 0.171 |
| BCancer   | 0.180 | 0.139        | 0.093 | 0.083 | 0.098 |
| heart-c   | 0.270 | 0.222        | 0.249 | 0.219 | 0.262 |
| credit-a  | 0.287 | 0.218        | 0.229 | 0.173 | 0.283 |
| adult     | 0.150 | 0.093        | 0.071 | 0.134 | 0.091 |
| vote      | 0.272 | 0.228        | 0.197 | 0.148 | 0.275 |
| wdbc      | 0.219 | 0.186        | 0.147 | 0.117 | 0.197 |
| spambase  | 0.308 | 0.250        | 0.237 | 0.088 | 0.194 |
| avg. rank | 5.9   | 4.0          | 3.2   | 2.5   | 4.4   |

Table: Approximation error<sup>2</sup> for scenario 3, k = 5,  $p^- = 0.2$  and  $p^+ = 0.6$ .

$$2n^{-1}\sum_{i=1}^{n}|\hat{y}(X_i)-\hat{y}_{oracle}(X_i)|$$

Double logistic regression approach to biased positive-unlabeled data

▶ < ∃ >

Jan Mielniczuk



Figure: Accuracy for benchmark datasets for scenario 1 and different values of 🔊 🗠

Jan Mielniczuk

Double logistic regression approach to biased positive-unlabeled data



Figure: Accuracy for benchmark datasets for scenario 1 and different values of 🔊 🗠

Jan Mielniczuk

Double logistic regression approach to biased positive-unlabeled data

#### Issues

- Estimation of the set  $\mathcal{P} = \{i : Y_i = 1\}$  crucial for performance of TM algorithm
- Feature selection under SCAR/ for an arbitrary propensity score ?
- Testing SCAR assumption  $H_0: \tilde{\gamma} = (\gamma_0, 0^T)^T$
- Under-performance of JOINT method (unlike in SCAR scenario) is due to maximisation issues (MM algorithm applied at present)

- J. Bekker, J. Davis, Beyond the selected completely at random assumption for learning from positive and unlabeled data, ECML'19 **SAR-EM**
- C. Gong et al, Instance-Dependent Positive and Unlabeled Learning with Labeling Bias Estimation, IEEE PAMI, 2022 **LBE**
- K. Furmańczyk, JM, P. Teisseyre, W. Rejchel, Double logistic regression approach to biased positive-unlabeled data, ECAI'2023 **TWO MODELS, JOINT**
- A. Wawrzeńczyk, JM, One-class classification approach to variational learning from biased positive unlabeled data, ECAI'2023 **VAE-PU-OCC**
- M. Platek, JM, Enhancing naive classifier positive unlabeled data based on logistic regression approach, FedCsis'2023 **Enhanced-Naive**

b) a) (E) b) a) (E) b)