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Our goal in this work is to characterize representations 
of classes in neural networks. 
❑ Neural representations are inherently stochastic - a 

representation of some network input  can be seen as 
an outcome of sampling  from the data distribution. 

❑ A reasonable notion of a class representation should 
capture the outcome of this sampling. 

We therefore propose to leverage class-conditional 
distributions of inputs’ representations as proxies to 
the neural representations of classes.
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Motivation



Our goal in this work is to characterize representations 
of classes in neural networks. 
❑ Concretely, we fit tractable class-conditional density 

models to sets of neural representations. 
❑ We then use these models to characterize distributions 

of representations in classes. 
Surprisingly, our density models uncover distinct 

modes of class fitting in residual convolutional 
networks. 
❑ This distinct modes of class fitting translate to marked 

differences in memorization of input examples and 
robustness to adversarial attacks.

Motivation



Inputs to classification heads are often constructed by 
pooling activations across spatial dimensions. 
❑ We use a similar construction for neural 

representations of network inputs.
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To construct class-conditional density models, we estimate 
an independent probability density model for neural 
representations in each class.
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Our density model for neural representations is a mixture of 
gaussian components with a Dirichlet process prior (DP-
GMM). 
❑ This is a nonparametric Bayesian model, in which the number of 

components adapts to the explained data. 

❑ In our previous work [1] we used this model characterize 
distributions of neural representations in networks that memorize 
inputs and networks that can exploit patterns in data. 
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Our density model for neural representations is a 
mixture of gaussian components with a Dirichlet 
process prior (DP-GMM). 
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Our density model for neural representations is a 
mixture of gaussian components with a Dirichlet 
process prior (DP-GMM). 
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Complexity measure for neural representations

Importantly, under DP-GMM we can estimate the KL 
divergence (or relative entropy) between posterior predictive 
distribution and another distribution with a tractable density. 
❑ This can be used as a complexity measure for the posterior 

predictive density. 
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Importantly, under DP-GMM we can estimate the KL 
divergence (or relative entropy) between posterior predictive 
distribution and another distribution with a tractable density. 



As a least-assumption distribution we adopt a maximum entropy 
distribution that explains just the location and scale of the data.

Complexity measure for neural representations



As a least-assumption distribution we adopt a maximum entropy 
distribution that explains just the location and scale of the data.
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We begin characterization of class 
representations by comparing log-densities 
estimated for inputs from each class.

How residual ConvNets fit classes? 



One obvious explanation for this structure could be that 
input representations in the high-density classes are 
simply more similar to each other. 
❑ Our results shows that this simple explanation is incorrect. 
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One obvious explanation for this structure could be that 
input representations in the high-density classes are 
simply more similar to each other. 
❑ Our results shows that this simple explanation is incorrect. 
❑ High-density cases are not more spatially compact at the neural 

representation level than the low-density classes. 
❑ However, posterior predictive distributions for these classes are 

vastly more complex than posterior predictive distributions for the 
low-density classes. 

❑ In other words, these classes have vastly more non-gaussian 
distributions of neural representations. 

Together, these findings suggests that at the neural 
representation level high-density classes are formed by 
compact but spatially separated components. 

How residual ConvNets fit classes? 



Can this structure be simply a product of the datasets 
commonly used to train neural nets? 
❑ We do not observe distinct modes of class fitting in plain 

ConvNets. The architecture therefore plays a role in the 
process that we observe!

How residual ConvNets fit classes? 



Class representations correlate with 
memorization
Feldman et al. [2] showed that in a long-tailed data 

distribution minimization of the generalization errors 
requires memorizing some of the input examples. 

Next, Feldman and Zhang [3] proposed a tractable 
proxy to the measure of input memorization. 

They demonstrated that contemporary neural nets 
memorize training data to a non-trivial degree. 

These results suggests that the structure we observe 
in class representations may correlate with 
memorization of input examples.



Class representations correlate with 
memorization
And indeed, we observe that the transition from the low-

density to the high-density regime correlate with a 
marked increase in the degree of input memorization.



Class representations correlate with 
adversarial robustness
Compact and spatially separated components in the 

high-density classes should—intuitively—be less 
robust to an adversarial attack. 
❑ In particular, a relatively small input perturbation may move the 

representation of the attacked example outside of its 
component. 

One way to verify this hypothesis could be to compare 
the high- and the low-density classes against a 
selection of adversarial attack. 

However, given the large number of attacks proposed so 
far, we instead opt for an attack-agnostic comparison.



Class representations correlate with 
adversarial robustness
To this end, we compare the low- and the high-

density classes w.r.t the performance of a classifier 
certifiably robust to  perturbations. 
❑ We use the randomized smoothing-based certification 

procedure proposed by Cohen et al. [4]. 
❑ We measure the robustness to an adversarial attack with 

 score of the smoothed classifier, the estimated certified 
radius and the fraction of inputs for which certified classifier 
did not abstain from prediction.
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Class representations correlate with 
adversarial robustness
We observe that the transition from the low- to the high-

density regime correlate with a marked decrease in 
adversarial robustness.



We characterized distributions of representations in 
classes learned by residual convolutional networks. 
❑ Surprisingly, we found that ResNets do not fit classes in an 

uniform way. 
❑ Previous observations showed that as training progresses 

the intra-class variance of neural representations becomes 
small relative to inter-class variance — a so called neural 
collapse. 

❑ Our results demonstrate that despite this increasing class 
separation during the final stages of training, classes in 
residual networks still retain non-trivial internal structure.
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We observe two distinct modes of class fitting that differ 
in mean and variance of the log-densities estimated 
for class members, namely, high- and low-density 
classes. 
❑ This observation is not explained by the input data — a 

similar structure is missing in plain ConvNets, indicating that 
the network architecture plays a role in the observed 
process. 

❑ We demonstrate that the high-density classes correlate with 
increased memorization of input examples. 

❑ We also demonstrate that the high-density classes are less 
robust to an adversarial attack.

Conclusions



See extended versions of our paper for additional 
results, including preliminary results for MLP-Mixer 
and Vision Transformer architectures. 

https://arxiv.org/abs/2212.00771
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