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1. Continual Learning - motivation
2. Test-time adaptation on synthetic distribution shift

3. . Proposed method for natural shifts
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1st ICML 2022 Workshop on Safe Learning for Autonomous Driving (SL4AD)
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Barbu, Andrei, et al. "Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models." Advances in neural information processing systems 32 (2019).
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Can we continue to learn after the deployment?
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Continual learning is a machine learning paradigm that focuses on training models to

acquire and retain knowledge over an extended period on a stream of data.
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Continual learning is a machine learning paradigm that focuses on training models to
acquire and retain knowledge over an extended period on a stream of data.
1) Adaptability
e Continual learning = Continual adaptation
2) Reduced catastrophic forgetting
3) Efficiency:
e More efficient training than standard fine-tuning when we want to add new class /
new task (e.g., medical applications)?

4) Human-like learning
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2. Test-time adaptation on synthetic distribution shift
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Wang, Qin, et al. "Continual test-time domain adaptation." CVPR 2022.
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How to optimize models at test-time. without
access to the ground truth labels?
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Figure 1: Predictions with lower entropy have
lower error rates on corrupted CIFAR-100-C.
Certainty can serve as supervision during testing.
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| Wang, Dequan, et al. "Tent: Fully test-time adaptation by entropy minimization." ICLR 2021..
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Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).
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Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).
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Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).
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Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,

this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).

Current SOTA:

clean ImageNet accuracy = 90%,
accuracy on corrupted data = 56%,
unsupervised adaptation -> 84%

accuracy
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Current SOTA:

e clean ImageNet accuracy = 90%,

Motion Blur Zoom Blur Snow Frost Fog

e accuracy on corrupted data = 56%,
¢ unsupervised adaptation -> 84%

accuracy

e Are we making a real progress?

Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).
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IDEAS TTA for natural shifts

e varying level of distribution
shift,
e varying quality,

e temporal correlation,
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n Sojka D., et al., AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation, ICCV 2023 CLVision workshop.
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e Detect how much the data distribution has changed and adjust accordingly,
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|dea:
e Detect how much the data distribution has changed and adjust accordingly,

Compute shift on Batch Norm statistics

C
D(¢®,¢7) = Z L(¢7|l97:) + K L(6f,1167)
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® We estimate BN statistics at time step t during test-time by linearly interpolating between

saved statistics from source data and calculated values from current batch of test-time data,

br = (1—B)¢° + By
o [, reflects the distribution shift:

ﬁt — ] — e_ﬂyD(quaqbrf)

e To provide more stability for the adaptation, we take into account previous (3, _, values and use

an exponential moving average (parameter o) for 3, update.

B=(1-0a)bi-1+ab
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- Séjka D., et al., AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation, ICCV 2023 CLVision workshop.
27



IDEA Our Results

NCBR O <) ®

100

I CIFAR10C
B CLAD-C

90 1

Accuracy (%)

Source TENT CoTTA EATA SAR AR-TTA (Ours) @&

Figure 1. Continual test-time adaptation methods evaluated on
synthetic (CIFAR-10C) and realistic (CLAD-C) domain shifts.
Our method is the only one that consistently allows to improve
over the naive strategy of using the (frozen) source model.

~

~

|
~

&

n Sojka D., et al., AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation, ICCV 2023 CLVision workshop.
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e hp selection (learning rate, momentum, method specific parameters),

e all of the existing TTA methods assume access to the target labels
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e hp selection (learning rate, momentum, method specific parameters),
e all of the existing TTA methods assume access to the target labels
e good for methods comparison,

e . but not very realistic
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Test-time adaptation improves adaptability of existing models to distribution shifts.

Yet, many challenges persist:
e How to select hp online?

e testing on very long sequences.
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AR-TTA: A Simple Method for Real-World Continual
Test-Time Adaptation

[Innovation Award @ ICCV CLVision challange &
ICCV 2023 CLVision Workshop]

] Revisiting Supervision for Continual Representation
Learning

Adapt Your Teacher: Improving Knowledge Distillation
for Exemplar-free Continual Learning
[WACV.2024]
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Hyper-parameter selection in TTA

- hp selection (learning rate, momentum, method specific parameters),

- all of the existing TTA methods assume access to the target labels

- this is not very realistic
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Sun, Tao, et al. "SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation." CVPR 2022. ~
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Yu, Lu, et al. "Semantic drift compensation for class-incremental learning." CVPR, 2020.
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Mundt Martin, et al. "CLEVA-Compass: A Continual Learning EValuat|on Assessment Compass to Promote Research Transparency and
Comparability." arXiv preprint arXiv:2110. 03331 (2021).
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Fig. 3: Examples of task and class confusion matrices for

Finetuning (top row) and Finetuning with 2,000 exemplars

(bottom row) on CIFAR-100. Note the large bias towards

the classes of the last task for Finetuning. By exploiting )
exemplars, the resulting classifier is clearly less biased.

M. Masana, et al."'Class-incremental learning: survey and performance evaluation on image classification.", TPAMI, 2022.
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iCaRL [16] GEM [55] EWC [27] LwF [58]

ER [49] DGR [12] A-GEM [6] IMM (28] LFL [59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL [9] PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC [57] DMC [60] Piggyback [62] RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]

Riemannian
Walk [14]

*

<

M. De Lange et al., "A continual learngm%/lsurvea/ Defying forgetting in classification tasks." IEEE transactions on pattern
analy5|s and machine intelligence (TPAMI), 2021. .
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