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Individuals Generate Sensitive Data
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Companies apply Machine Learning
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ML Models Leak Private Information

— 1L

Reconstruct Face Images
[Fredrikson et al., CCS 2015]




Centralized vs. Federated Learning
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Key Properties of Federated Learning

3638

Central Server

+ Heterogenous data
+ Efficient communication
+ LLow costs

Individual
User

- Performs compute
- Provides storage
+ Keeps data locally

Privacy?!
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Federated Learning 1s Extremely Popular
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What Trust Model 1s Needed for Privacy?

Federated Learning



What Trust Model 1s Needed for Privacy?
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Federated Learning
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Central Server

M Users

Federated Learning
Update

§ QModel

Aggregation
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Gradients
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Alice’s Privacy Relies purely on the Gradients
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rrior patd AnCCONSIrucCtions AACKsS arc
[Limited
We can reconstruct data... We can extract data;:
... from different classes ... from mini-batches of size = 1

... from small mini-batches
... that 1s of

... at higlweoomptekitpal costs
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[Zhu et al., NeurlIPS 2019] [Geiping et al., NeurlPS 2020] 13



We Extract Large Amounts of Data Perfectly

Original u :
Data oy

Extracted Data u ’

— — =
=
| e =

... from all kinds of class distribution
... from large mini-batches with hundreds of data points
... with high complexity
... at near-zero computational costs

Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas
Papernot. When the Curious Abandon Honesty: Federated Learning Is Not Private, 2021.
[IEEE Euro S&P ’23a]
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Forward Pass through Fully-Connected Layer

Neuron
l

— Output: y; = ReLU(W] x + b;)
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Prior Extraction Works only for Single Data Points

Q—> Vi = w{x + bi 0L
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Q ow; b, mall bl
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Vi _ 1 Contains scaled input data point

C ob;

Contains scaling factor

[Geiping et al., NeurIPS 2020] 1



Extraction for Large Mini-Batches Should Fail

B
0L _ 0L 6yi’j
/v aW’{ = Oyi,j aWT

Mini-batch gradient

We believe rescaled
sradients look like

this....
.
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Data Leaks Directly from Model Gradients

weights gradient = gradients[0].numpy() oL -1 oL
inverse bias = 1 / gradients[1].numpy() X = ( )

extracted data = inverse bias * weights gradient abl awi
plot(extracted data, num rows = 3, num cols = 6)

... but they actually

0668‘%\'\v look like that!

mini-batch size=100
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Gradients can Leak Single Data Points

Why can we still extract individual data points x?

{

Gradient of a single
data point
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What Trust Model 1s Needed for Privacy?

et

Even a passive, honest-but-curious attacker can extract

a significant amount of sensitive user-data.
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What Trust Model 1s Needed for Privacy?

Even a passive, honest-but-curious attacker can extract
a significant amount of sensitive user-data.
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Our Trap Weights Increase Natural Leakage

Trap Weights: Induce x’w; + b; < 0 for most input data points x

Gradlents

)

Makes other points
extractable

1) Initialize model weights at random
2) Scale positive components down by s < 1
2> (x"sw) + (x"w;) + b; < 0 more often

Assumes input features x in range [0, 1]

)

Standard
pre-processing
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Influence of Scaling Factor

Original Weights

—2.0-1.5-1.0-0.50.0 0.5 1.0 1.5 2.0

Active
Extraction

Baseline: Passive
Extraction

66 S 29
s =0.5 s = 0.99
Original
Weights
Scaled Weights
—2.0-1.5-1.0-0500 05 1.0 1.5 2.0 —2-0-1'.5—1'~0—<5-5(>-'y>35 1.0 1.5 2.0
Inconspicuous
Scaling Activated Neurons
Factor (s) (by 1 data point) (%) Extracted Data (%)
0.4 0 0
0.5 0 0
0.9 0 0
0.99 65.5(51.4) 45.7
1.0 99.9 (4.4) 21.8

ImageNet Extraction: Mini-Batch Size = 100, 1000 Neurons
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Our Trap Weights Improve Extraction

Passive | Active
MNIST 5.8 54
CIFARIO | 25.5 54
ImageNet | 21.8 45.7
IMDB 25.4 65.4
Extracted Data (%),

Mini-Batch Size = 100,

1000 Neurons

O
2 S

CIFARI10 )
ExtMizellBhm

osradients within <1 second
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More Neurons and Smaller Mini-Batches
et us Extract More Data
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What Trust Model 1s Needed for Privacy?

An active, malicious attacker can significantly increase
privacy risks for users.
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Conclusion for Privacy in FL

N
Participate only 1n Protocols Replace Trust by
with Trusted Server Verifiable
Mechanisms

A Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas
Papernot. Is Federated Learning a Practical PET Yet?, 2023. [IEEE Euro S&P ’23a]
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Defending FL 1s Complex and Costly

! ! ‘1v:’ -

User Sampling

Gradient Calculation
and Aggregation

Model

Initiﬁtion

Computational Costs

\_’

Noise

Addition
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Power Imbalance Makes FILL Vulnerable

Server wants User Provisioning Model
Utility & Sampling Manipulations
Users need Unknown Unveritied shared model

Privacy Collaborators and computations
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What Trust Model 1s Needed for Privacy?

An active, malicious attacker can significantly increase
privacy risks for users.
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Differential Privacy Protects Individual Data

o))
—Frain =
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(1) Clip Gradients (2) Noise Gradients



Differential Privacy in Federated Learning

N ((

Central DP: Server adds noise x

Distributed DP: Users add noise

After aggregation /A

D Local DP: Users add noise
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Aggregate via Secure Aggregation

Global Noise
N(0,0%c?) Alice’s data seems

protected

Overhead:

- Computation

- Communication

- Storage

- Availability of PKI

[Bonawitz et al., CCS 2017]
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Attacking FL protected by DDP+SA
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A Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas
Papernot. Is Federated Learning a Practical PET Yet?, 2023. [IEEE Euro S&P ’23a]
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What Trust Model 1s Needed for Privacy?

Even 1n hardened variants of the protocol, a malicious attacker
can breach individual users’ privacy.
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My Research

Goal: Develop mechanisms that provide individualized
notions of privacy for machine learning

Federated Data Extraction in Federated Learning EuroS&P°23
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My Research

Goal: Develop mechanisms that provide individualized
notions of privacy for machine learning
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My Research

Goal: Develop mechanisms that provide individualized
notions of privacy for machine learning

Individualized Individualized Differential PoPETs’23
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Side-Channel Attacks against Query Systems

Chorus
‘ SS > (Uber)
g -
- Anon. Answer
An al_y q or Error «
AN Private Database

IF Name="Alice’ —
AND Disease=‘Cancer’ Anonymizing

THEN SQRT(age — 1000) Proxy

Side-channel attacks on query-based data anonymization. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021. [CCS’21]

. Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis.
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FL Sources



Mitigation Methods



Differential Privacy

Goal: produce statistically indistinguishable outputs on any pair of datasets
that only differ by any single data point.

Differential Privacy: a randomized mechanism M with domain D and
range R satisfies (g, §)-differential privacy if for any subset S € R and any
adjacent datasets d,d’ € D, i.e., ||[d — d'||;{ < 1, the following inequality
holds:

PriM(d) € S] < e®*Pr[M(d') e S|+ 6
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Secure Mult1 Party Computation (MPC)

Setup: given participants pq, »,, p3 and their private data x4, x5, x5.
Task: compute value of a private function F (x4, x5, x3).

Example: compute the maximum or average salary of the participants,
without revealing the individual salaries.

Machine Learning: shareholders can compute any function of inputs
without seeing anything but shares and the final output.Properties:
(1) input privacy — no information about private data can be inferred
from messages exchanged during MPC, and

(2) honest parties either compute correct output or abort.
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Secure Multi-Party Computation (MPC)

Alice Bob Carol

100K [ 200K ) 300K M
) T T
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Secure Multi-Party Computation (MPC)

Alice Bob Carol
100K [ 200K @) 300K g™
I O R ™ M
Generate 50 -80 0
Random 30 100 350
Shares 20 180 -50




Secure Multi-Party Computation (MPC)

Alice Bob Carol

Generate
Random
Shares
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Secure Multi-Party Computation (MPC)

Alice Bob Carol

100K [ 200K ) 300K M

Generate 50 -80 0
Random 30 100 350
Shares 20 180 50

50 30 20
>ecret 80 100 180

Sharing

0 350 50
Add Shares | -30 480 150




Homomorphic Encryption

1. Addition

Enc(x) + Enc(y) = Enc(x +y)
Enc(x) + y* = Enc(x + y)

2. Multiplication

Enc(x) * Enc(y) =
x®modn*y®modn =
x®y®modn =
(xy)¢ modn =
Enc(x xy)

51



Attacker Models

* Honest-but-curious — adversary follows the protocol but tries to infer
information from the protocol transcript.

* Malicious — adversary actively deviates from the protocol

* Occasionally Byzantine — adversary acts honest most of the time and only
acts maliciously on occasions

52



Secure Aggregation

[ User || | Server
Generate DH keypairs <ciX .cfX> and <s#K s£K> !

| * Robustness
Round 0: i Send signed public keys <cf¥ sf¥ g,> N . .
Advertise Keys E Wait for enough users 1€ U ( M ad I ICIOUS Se rve r)
|
|
|
|
I
|
|

iProadcast list of received public keys to all users in 21
* Can collaborate with up

Round LJ‘\'alidafe signatures. generate bx and compute suv
Compute t-out-of-n secret shares for bu and 53

SRR | Send encrypted shares of bu and si¥ - ton / 3 - 1 CI |e nts
Round 2 t | Wait for enough users 12C 1
B e Forward received encrypted shares| ° T | r N _ 1
Masked Input C‘ompﬁfg mgsked input yu : olerates u p to / 3
{ : . ‘e 1 ‘u : .
Collection =2 dropouts of clients

Wait for enough users 3¢ 2
Send a list of at least t survived users: #3 C 12!

N (O

Trimam T

A

Round 3: Abort if |31 < ¢
Consistency ™ I'Sign 13 and reply with a signature oi

Y

)
Checks ! Collect signatures
Lhecks ! ,
[} |
; I
= E Send a list {v, g/} of survived users from U4 C 3]
Round 4: | Abort if |1/4] < 1, validate signatures £ |
Unmasking ™ i Send shares of b« for alive users and su for dropped !
i Reconstruct secrets
- : Compute ¥ (the final aggregated value)

Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. "Practical secure
aggregation for privacy-preserving machine learning." In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 1175-1191.

~ N1 ™
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Secure Aggregation

Bonawitz et al., 2017

* Computation:
* User: 0(n® + mn)
e Server : 0(mn?)

* Communication:
* User:0(n+m)
* Server : 0(n? + mn)

* Storage:
* User:0(n+m)
* Server: 0(n? + m)

Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. "Practical secure
aggregation for privacy-preserving machine learning." In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 1175-1191.

Bell et al., 2020

* Computation:
* User:0(log?n + logn)
* Server : 0(n(log?n + logn))

* Communication:
* User: O(logn +m)
 Server : O(n(logn + m))

Bell, James Henry, Kallista A. Bonawitz, Adria Gascén, Tancrede Lepoint, and Mariana
Raykova. "Secure single-server aggregation with (poly) logarithmic overhead." In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1253-1269. 2020.

54



Distributed Differential Privacy

Distributed Discrete Gaussian Skellam Mechanism

e discretizes the data and adds * based on the difference of two
discrete Gaussian noise before independent Poisson random
performing secure aggregation variables

Kairouz, Peter, Ziyu Liu, and Thomas Steinke. "The distributed discrete gaussian Agarwal, Naman, Peter Kairouz, and Ziyu Liu. "The skellam

mechanism for federated learning with secure aggregation." In International mechanism for differentially private federated learning.” Advances

Conference on Machine Learning, pp. 5201-5212. PMLR, 2021. in Neural Information Processing Systems 34 (2021): 5052-5064. 55



Forwarding over
Convolutional Layers
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Filter 1
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Forwarding over
Fully Connected Layers
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Other Activation Functions

Zero-Gradients Zero—Graclients
RelLU Sigmoid |
max (0, ) \ o(x) = == I

Zero-Gra(lients Non-Zero-Gradient
tanh | Leaky ReLU 'S
tanh(z) g max(0.1z, x)

M E =y 10
... but less

sparsity.
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Lossy Architecture

Conv(f=32, k=(3,3), s=1, p=same, act=relu)
MaxPool()

Conv(f=64, k=(3,3), s=1, p=same, act=relu)
Dropout()

Flatten
Dense(n=1000, act=relu)
Dropout()
Dense(n=#classes, act=None)
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Effect of Dropout

Same Data Point Extracted at 4 Different Gradients (Dropout Rate = 0.1)
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Effect of Pooling

De-Compress
>

Same Data Point Extracted at 4 Different Gradients (Max Pooling with
2x2)

69



Heavy Dropout and Pooling

(¢) Dropout with p = 0.3 and pooling.
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Individual Activation Neurons

% Individual Act.

Passive | Active

MNIST 0.6% 20.3%
CIFAR10 5.8% 41.2%
ImageNet | 4.4% 51.4%
IMDB 3.6% 19.2%

71



Extractable Datapoints

#=0 —1#2#6#0#—13#2#0

l& e B

#=0#0#5#0#2#0#0#—1=

o

#=()#0#2#—() —()#7#—()#2#2

ﬂ - A

-1#3#3#—1#0#0#69#0
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Extractable Datapoints

#=0 #=0 #=0 #=24 #=0 #=0 #=3 #=0

#=4 #=1 #=0 #=1 # 3 #—1 #=13 #=0 #—19#—13

#=5 #=1 #=1 #=4 #=1 #=1 #= 0 #=0 #=0 #=10

w .’ . '; > ‘ | " |
A L4 . . : ) 4 e *’. :
e, e R % BL & | P‘ 42

#=O#=ﬂ_1#3#0#0#0#5#2#0#3

—-— -
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Related Work (FL)



Optimization-based Data Reconstruction
“Gradient-Matching”

oL 0L Input: Gradients, ('[] received from v1ct1m user

/ u; at iteration ¢, Shared model f ( ) at
awi abl iteration {.

oL’ oL Output: Reconstructed training data, (x}, y)
0 W; d bi

AlE+1] A ]
§  «§ —av, ,qu

end for |l+‘l l’ +1]
b T o TS | )

&9 « (N(0,1),N(0,1)) & tnitialize

2: for £ € [1,T) do

3: Gltl =N E( Itl ) i ) > Dummy gradients

4: l)lll = “Cltl Clﬂllz > Dummy vs user
~ [E41] A ] lll

5 X +—X —aV, 41 D

6:

7:

8:

[1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural
information processing systems 32 (2019). 75



Limitations and Summary of Passive Attackers

iter=0 iter=10 iter=20 iter=30 iter=40 iter=50 iter=60 iter=70 iter=80
Sl i R X i A S - U WS o T e A L i o L i T o Pl e R bt 0

AR el Teniatiat  GRrel Al LRESETRS e Belodds SN
* Low fidelit
iter=90 iter=100 iter=110 iter=120 lter—130 iter=140 iter=150 iter=160 iter=170 iter=180

+Non-complex datz FFFF ﬁ H H H

- Flgure aken from [2].

* Small mini-batch sizes, dlfferent classes

Even a passive attacker in vanilla FL

can reconstruct private user data.

[2] Zhao, Bo, Konda Reddy Mopuri, and Hakan Bilen. "idlg: Improved deep leakage from gradients."
arXiv preprint arXiv:2001.02610 (2020). 76



Imprinting User Data in Model Gradients

« Observation: bias term controls if a data point activates a neuron
y; = ReLU(w!x + b;)
Vi = 0 lfb1 < 0 and |bl| > |WTX|

* Approach:
* Control which data points activate what neurons

* Turn model weights into linear function (e.g. average pixel

1

brightness: —,m: number of features)

* [teratively extract data

[Fowl et al., 2021, ICLR] 77



Imprinting User Data 1n Model Gradients

Weights Bia
S y >0
—l_ %
Imprint Module
o (Fully Connected
Mmll;Batc Layer)

[Fowl et al., 2021, ICLR] 78



Imprinting User Data in Model Gradients

Weights Bia
S
Imprint Module
o (Fully Connected
Mlml;Batc Layer)

‘q =
oy x—k.{

[Fowl et al., 2021, ICLR] 79



Data Extraction Success

S
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Figure taken from [4]. Results for mini-batch size of
64.

Extraction success increases with increasing the number of bins

[Fowl et al., 2021, ICLR] @0



Eluding Secure Aggregation

Central Server

\ g
M d | -100 -75 -50 -25 0.0 25 5.0 7.5
§ § &» )Upd te

e RelLU
/7 \ Model Inconsistency
£ 3 % |
_ <> <> > Feleviaton Gradient Suppression
User 1 User2 Usern R@LU(W;TX + bl) = (0

[Pasquini et al., 2022, CCS] s1



Summary of my Contributions

1. Even with large mini-batches of high-dimensional data,
significant proportions of private user data can be leaked to a
passive attacker.

2. Active attackers can amplify this leakage even without
performing highly noticeable changes to the model
architecture / parameters.

Prior work has still largely underestimated the privacy risk of
(hardened) FL.




